#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Sep 14 21:02:42 2018 @author: jbuisine """ from __future__ import print_function import sys, os, getopt import numpy as np import random import time import json from modules.utils.data_type import get_svd_data from PIL import Image from ipfml import processing from ipfml import metrics from skimage import color from modules.utils import config as cfg # getting configuration information zone_folder = cfg.zone_folder min_max_filename = cfg.min_max_filename_extension # define all scenes values scenes_list = cfg.maxwell_scenes_folders scenes_indexes = cfg.scenes_indices choices = cfg.normalization_choices path = cfg.generated_folder zones = cfg.zones_indices seuil_expe_filename = cfg.seuil_expe_filename noise_choices = cfg.noise_labels metric_choices = cfg.metric_choices_labels output_data_folder = cfg.output_data_folder end_counter_index = cfg.default_number_of_images generic_output_file_svd = '_random.csv' picture_step = 10 # avoid calibration data ? calibration_folder = 'calibration' def generate_data_svd(data_type, color, mode): """ @brief Method which generates all .csv files from scenes @param data_type, metric choice @param mode, normalization choice @return nothing """ scenes = os.listdir(path) # filter scene scenes = [s for s in scenes if calibration_folder not in s] # remove min max file from scenes folder scenes = [s for s in scenes if min_max_filename not in s] # keep in memory min and max data found from data_type min_val_found = sys.maxsize max_val_found = 0 data_min_max_filename = os.path.join(path, data_type + min_max_filename) # go ahead each scenes for id_scene, folder_scene in enumerate(scenes): print(folder_scene) scene_path = os.path.join(path, folder_scene) for noise in noise_choices: noise_path = os.path.join(scene_path, noise) # getting output filename if color: output_svd_filename = data_type + "_color_" + mode + generic_output_file_svd else: output_svd_filename = data_type + "_" + mode + generic_output_file_svd # construct each zones folder name zones_folder = [] svd_output_files = [] # get zones list info for index in zones: index_str = str(index) if len(index_str) < 2: index_str = "0" + index_str current_zone = "zone"+index_str zones_folder.append(current_zone) zone_path = os.path.join(noise_path, current_zone) if not os.path.exists(zone_path): os.makedirs(zone_path) svd_file_path = os.path.join(zone_path, output_svd_filename) # add writer into list svd_output_files.append(open(svd_file_path, 'w')) counter_index = 1 while(counter_index < end_counter_index): if counter_index % picture_step == 0: counter_index_str = str(counter_index) if color: img_path = os.path.join(noise_path, folder_scene + "_" + noise + "_color_" + counter_index_str + ".png") else: img_path = os.path.join(noise_path, folder_scene + "_" + noise + "_" + counter_index_str + ".png") current_img = Image.open(img_path) img_blocks = processing.divide_in_blocks(current_img, (200, 200)) for id_block, block in enumerate(img_blocks): ########################### # Metric computation part # ########################### data = get_svd_data(data_type, block) ################## # Data mode part # ################## # modify data depending mode if mode == 'svdne': # getting max and min information from min_max_filename with open(data_min_max_filename, 'r') as f: min_val = float(f.readline()) max_val = float(f.readline()) data = processing.normalize_arr_with_range(data, min_val, max_val) if mode == 'svdn': data = processing.normalize_arr(data) # save min and max found from dataset in order to normalize data using whole data known if mode == 'svd': current_min = data.min() current_max = data.max() if current_min < min_val_found: min_val_found = current_min if current_max > max_val_found: max_val_found = current_max # now write data into current writer current_file = svd_output_files[id_block] # add of index current_file.write(counter_index_str + ';') for val in data: current_file.write(str(val) + ";") current_file.write('\n') if color: print(data_type + "_" + noise + "_color_" + mode + "_" + folder_scene + " - " + "{0:.2f}".format((counter_index) / (end_counter_index)* 100.) + "%") else: print(data_type + "_" + noise + "_"+ mode + "_" + folder_scene + " - " + "{0:.2f}".format((counter_index) / (end_counter_index)* 100.) + "%") sys.stdout.write("\033[F") counter_index += 1 for f in svd_output_files: f.close() if color: print(data_type + "_" + noise + "_color_" + mode + "_" + folder_scene + " - " + "Done...") else: print(data_type + "_" + noise + "_"+ mode + "_" + folder_scene + " - " + "Done...") # save current information about min file found if mode == 'svd': with open(data_min_max_filename, 'w') as f: f.write(str(min_val_found) + '\n') f.write(str(max_val_found) + '\n') print("%s : end of data generation\n" % mode) def main(): # default value of p_step p_step = 10 p_color = 0 if len(sys.argv) <= 1: print('Run with default parameters...') print('python generate_all_data.py --metric all --color 0') print('python generate_all_data.py --metric lab --color 0') print('python generate_all_data.py --metric lab --color 1 --step 10') sys.exit(2) try: opts, args = getopt.getopt(sys.argv[1:], "hm:s:c", ["help=", "metric=", "step=", "color="]) except getopt.GetoptError: # print help information and exit: print('python generate_all_data.py --metric all --color 1 --step 10') sys.exit(2) for o, a in opts: if o == "-h": print('python generate_all_data.py --metric all --color 1 --step 10') sys.exit() elif o in ("-s", "--step"): p_step = int(a) elif o in ("-c", "--color"): p_color = int(a) elif o in ("-m", "--metric"): p_metric = a if p_metric != 'all' and p_metric not in metric_choices: assert False, "Invalid metric choice" else: assert False, "unhandled option" global picture_step picture_step = p_step if picture_step % 10 != 0: assert False, "Picture step variable needs to be divided by ten" # generate all or specific metric data if p_metric == 'all': for m in metric_choices: generate_data_svd(m, p_color, 'svd') generate_data_svd(m, p_color, 'svdn') generate_data_svd(m, p_color, 'svdne') else: generate_data_svd(p_metric, p_color, 'svd') generate_data_svd(p_metric, p_color, 'svdn') generate_data_svd(p_metric, p_color, 'svdne') if __name__== "__main__": main()