# NoiseAnalysis ## Description Analysis of different noises using singular values vector obtained from SVD compression. Noise list : - cauchy - gaussian - laplace - log_normal - mut_white - salt_pepper - white ## Scripts ### noise_computation.py This script is used to compute all noise for each image in the **images** folder. ``` python noise_computation.py --noise salt_pepper --image path/to/image.png --n 1000 --identical 1 --output image_salt_pepper.png --all 1 --p 0.1 ``` Parameters : - **noise** : specify the noise to use (one available from the list above) - **image** : source path of the image we want to add noise - **n** : level of noise to use - **identical** : same noise or not for each chanel in case of RGB image - **output** : output image name wanted - **all** : generate all level noise from 1 to **n** - **p** : optional parameter only used for salt and pepper noise ### noise_svd_visualization.py This script is used to display noise for each level of noise of image. ``` python noise_svd_visualization.py --prefix generated/${image}/${noise} --metric lab --n 1000 --mode svdne --interval "0, 200" --step 40 --norm 0 --ylim "0, 0.05" ``` Parameters : - **prefix** : specify the folder of image for specific noise - **metric** : metric choice to compute in order to extract SVD data - **mode** : level of normalization ['svd', 'svdn', 'svdne'] - **interval** : features to display from singular values vector - **step** : interval of noise to keep for display - **norm** : normalization between only values kept from interval - **ylim** : ylim to use in order to display curves