# main imports import os import sys import argparse import pandas as pd import numpy as np import logging import datetime import random # model imports from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, VotingClassifier from sklearn.feature_selection import SelectFromModel import joblib import sklearn.svm as svm from sklearn.utils import shuffle from sklearn.metrics import roc_auc_score from sklearn.model_selection import cross_val_score from sklearn.feature_selection import RFECV # modules and config imports sys.path.insert(0, '') # trick to enable import of main folder module import custom_config as cfg import models as mdl #from sklearn.ensemble import RandomForestClassifier def loadDataset(filename): ######################## # 1. Get and prepare data ######################## # scene_name; zone_id; image_index_end; label; data dataset_train = pd.read_csv(filename + '.train', header=None, sep=";") dataset_test = pd.read_csv(filename + '.test', header=None, sep=";") # default first shuffle of data dataset_train = shuffle(dataset_train) dataset_test = shuffle(dataset_test) # get dataset with equal number of classes occurences noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 1] not_noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 0] #nb_noisy_train = len(noisy_df_train.index) noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 1] not_noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 0] #nb_noisy_test = len(noisy_df_test.index) # use of all data final_df_train = pd.concat([not_noisy_df_train, noisy_df_train]) final_df_test = pd.concat([not_noisy_df_test, noisy_df_test]) # shuffle data another time final_df_train = shuffle(final_df_train) final_df_test = shuffle(final_df_test) # use of the whole data set for training x_dataset_train = final_df_train.iloc[:, 4:] x_dataset_test = final_df_test.iloc[:, 4:] y_dataset_train = final_df_train.iloc[:, 3] y_dataset_test = final_df_test.iloc[:, 3] return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test def train_predict_random_forest(x_train, y_train, x_test, y_test): print('Start training Random forest model') start = datetime.datetime.now() # model = _get_best_model(x_train_filters, y_train_filters) random_forest_model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1) # No need to learn random_forest_model = random_forest_model.fit(x_train, y_train) y_test_model = random_forest_model.predict(x_test) test_roc_auc = roc_auc_score(y_test, y_test_model) end = datetime.datetime.now() diff = end - start print("Evaluation took: {}, AUC score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc)) return random_forest_model def train_predict_selector(model, x_train, y_train, x_test, y_test): start = datetime.datetime.now() print("Using Select from model with Random Forest") selector = RFECV(estimator=model, min_features_to_select=13, verbose=1, n_jobs=4) selector.fit(x_train, y_train) x_train_transformed = selector.transform(x_train) x_test_transformed = selector.transform(x_test) print('Previous shape:', x_train.shape) print('New shape:', x_train_transformed.shape) # using specific features model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1) model = model.fit(x_train_transformed, y_train) y_test_model= model.predict(x_test_transformed) test_roc_auc = roc_auc_score(y_test, y_test_model) end = datetime.datetime.now() diff = end - start print("Evaluation took: {}, AUC score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc)) def main(): parser = argparse.ArgumentParser(description="Train and find using all data to use for model") parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True) parser.add_argument('--output', type=str, help='output surrogate model name') args = parser.parse_args() p_data_file = args.data p_output = args.output print(p_data_file) # load data from file x_train, y_train, x_test, y_test = loadDataset(p_data_file) # train classical random forest random_forest_model = train_predict_random_forest(x_train, y_train, x_test, y_test) # train using select from model train_predict_selector(random_forest_model, x_train, y_train, x_test, y_test) if __name__ == "__main__": main()