# main imports import sys, os, argparse import numpy as np import random import time import json # image processing imports from PIL import Image from ipfml.processing import transform, segmentation from ipfml import utils # modules imports sys.path.insert(0, '') # trick to enable import of main folder module import custom_config as cfg from modules.utils import data as dt from data_attributes import get_image_features # getting configuration information zone_folder = cfg.zone_folder min_max_filename = cfg.min_max_filename_extension # define all scenes values choices = cfg.normalization_choices zones = cfg.zones_indices features_choices = cfg.features_choices_labels output_data_folder = cfg.output_data_generated generic_output_file_svd = '_random.csv' def generate_data_svd(data_type, mode, dataset, output): """ @brief Method which generates all .csv files from scenes @param data_type, feature choice @param mode, normalization choice @return nothing """ scenes = os.listdir(dataset) # remove min max file from scenes folder scenes = [s for s in scenes if min_max_filename not in s] # keep in memory min and max data found from data_type min_val_found = sys.maxsize max_val_found = 0 data_min_max_filename = os.path.join(dataset, data_type + min_max_filename) # go ahead each scenes for folder_scene in scenes: print(folder_scene) scene_path = os.path.join(dataset, folder_scene) # getting output filename output_svd_filename = data_type + "_" + mode + generic_output_file_svd # construct each zones folder name zones_folder = [] svd_output_files = [] # get zones list info for index in zones: index_str = str(index) if len(index_str) < 2: index_str = "0" + index_str current_zone = "zone"+index_str zones_folder.append(current_zone) zone_path = os.path.join(scene_path, current_zone) svd_file_path = os.path.join(zone_path, output_svd_filename) # add writer into list svd_output_files.append(open(svd_file_path, 'w')) # get all images of folder scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img]) number_scene_image = len(scene_images) for id_img, img_path in enumerate(scene_images): current_image_postfix = dt.get_scene_image_postfix(img_path) current_img = Image.open(img_path) img_blocks = segmentation.divide_in_blocks(current_img, (200, 200)) for id_block, block in enumerate(img_blocks): ########################### # feature computation part # ########################### data = get_image_features(data_type, block) ################## # Data mode part # ################## # modify data depending mode if mode == 'svdne': # getting max and min information from min_max_filename with open(data_min_max_filename, 'r') as f: min_val = float(f.readline()) max_val = float(f.readline()) data = utils.normalize_arr_with_range(data, min_val, max_val) if mode == 'svdn': data = utils.normalize_arr_with_range(data) # save min and max found from dataset in order to normalize data using whole data known if mode == 'svd': current_min = data.min() current_max = data.max() if current_min < min_val_found: min_val_found = current_min if current_max > max_val_found: max_val_found = current_max # now write data into current writer current_file = svd_output_files[id_block] # add of index current_file.write(current_image_postfix + ';') for val in data: current_file.write(str(val) + ";") current_file.write('\n') print(data_type + "_" + mode + "_" + folder_scene + " - " + "{0:.2f}".format((id_img + 1) / number_scene_image * 100.) + "%") sys.stdout.write("\033[F") for f in svd_output_files: f.close() print('\n') # save current information about min file found if mode == 'svd': with open(data_min_max_filename, 'w') as f: f.write(str(min_val_found) + '\n') f.write(str(max_val_found) + '\n') print("%s_%s : end of data generation\n" % (data_type, mode)) def main(): parser = argparse.ArgumentParser(description="Compute and prepare data of feature of all scenes (keep in memory min and max value found)") parser.add_argument('--feature', type=str, help="feature choice in order to compute data (use 'all' if all features are needed)", required=True) parser.add_argument('--dataset', type=str, help='dataset folder with all scenes', required=True) parser.add_argument('--output', type=str, help='output expected name of generated file', required=True) args = parser.parse_args() p_feature = args.feature p_dataset = args.dataset p_output = args.output # generate all or specific feature data if p_feature == 'all': for m in features_choices: generate_data_svd(m, 'svd', p_dataset, p_output) generate_data_svd(m, 'svdn', p_dataset, p_output) generate_data_svd(m, 'svdne', p_dataset, p_output) else: if p_feature not in features_choices: raise ValueError('Unknown feature choice : ', features_choices) generate_data_svd(p_feature, 'svd', p_dataset, p_output) generate_data_svd(p_feature, 'svdn', p_dataset, p_output) generate_data_svd(p_feature, 'svdne', p_dataset, p_output) if __name__== "__main__": main()