# main imports import os import sys import argparse import pandas as pd import numpy as np import logging import datetime import random # model imports from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, VotingClassifier import joblib import sklearn import sklearn.svm as svm from sklearn.utils import shuffle from sklearn.metrics import roc_auc_score from sklearn.model_selection import cross_val_score from sklearn.preprocessing import MinMaxScaler # modules and config imports sys.path.insert(0, '') # trick to enable import of main folder module import custom_config as cfg import models as mdl from optimization.ILSMultiSpecificSurrogate import ILSMultiSpecificSurrogate from macop.solutions.BinarySolution import BinarySolution from macop.operators.mutators.SimpleMutation import SimpleMutation from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation from macop.operators.crossovers.SimpleCrossover import SimpleCrossover from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover from macop.operators.policies.UCBPolicy import UCBPolicy from macop.operators.policies.RandomPolicy import RandomPolicy from macop.callbacks.BasicCheckpoint import BasicCheckpoint from macop.callbacks.UCBCheckpoint import UCBCheckpoint from optimization.callbacks.SurrogateCheckpoint import SurrogateCheckpoint from optimization.callbacks.MultiSurrogateCheckpoint import MultiSurrogateCheckpoint from sklearn.ensemble import RandomForestClassifier # avoid display of warning def warn(*args, **kwargs): pass import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.warn = warn # default validator def validator(solution): # at least 5 attributes if list(solution._data).count(1) < 2: return False return True def train_model(X_train, y_train): #print ('Creating model...') # here use of SVM with grid search CV Cs = [0.001, 0.01, 0.1, 1, 10, 100] gammas = [0.001, 0.01, 0.1,10, 100] param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas} svc = svm.SVC(probability=True, class_weight='balanced') #clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1) clf = GridSearchCV(svc, param_grid, cv=4, verbose=0, n_jobs=-1) clf.fit(X_train, y_train) model = clf.best_estimator_ return model def loadDataset(filename): ######################## # 1. Get and prepare data ######################## dataset = pd.read_csv(filename, sep=',') # change label as common min_label_value = min(dataset.iloc[:, -1]) max_label_value = max(dataset.iloc[:, -1]) dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(min_label_value, 0) dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(max_label_value, 1) X_dataset = dataset.iloc[:, :-1] y_dataset = dataset.iloc[:, -1] problem_size = len(X_dataset.columns) # min/max normalisation over feature # create a scaler object scaler = MinMaxScaler() # fit and transform the data X_dataset = np.array(pd.DataFrame(scaler.fit_transform(X_dataset), columns=X_dataset.columns)) # prepare train, validation and test datasets X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, test_size=0.3, shuffle=True) return X_train, y_train, X_test, y_test, problem_size def main(): parser = argparse.ArgumentParser(description="Train and find best filters to use for model") parser.add_argument('--data', type=str, help='open ml dataset filename prefix', required=True) parser.add_argument('--every_ls', type=int, help='train every ls surrogate model', default=50) # default value parser.add_argument('--k_division', type=int, help='number of expected sub surrogate model', default=20) parser.add_argument('--k_dynamic', type=int, help='specify if indices for each sub surrogate model are changed or not for each training', default=0, choices=[0, 1]) parser.add_argument('--k_random', type=int, help='specify if split is random or not', default=1, choices=[0, 1]) parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True) parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True) parser.add_argument('--generate_only', type=int, help='number of iteration for Local Search algorithm', default=0, choices=[0, 1]) parser.add_argument('--output', type=str, help='output surrogate model name') args = parser.parse_args() p_data_file = args.data p_every_ls = args.every_ls p_k_division = args.k_division p_k_dynamic = bool(args.k_dynamic) p_k_random = bool(args.k_random) p_ils_iteration = args.ils p_ls_iteration = args.ls p_generate_only = bool(args.generate_only) p_output = args.output # load data from file and get problem size X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file) # create `logs` folder if necessary if not os.path.exists(cfg.output_logs_folder): os.makedirs(cfg.output_logs_folder) logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/{0}.log'.format(p_output), level=logging.DEBUG) # init solution (`n` attributes) def init(): return BinarySolution([], problem_size).random(validator) # define evaluate function here (need of data information) def evaluate(solution): start = datetime.datetime.now() # get indices of filters data to use (filters selection from solution) indices = [] for index, value in enumerate(solution._data): if value == 1: indices.append(index) print(f'Training SVM with {len(indices)} from {len(solution._data)} available features') # keep only selected filters from solution x_train_filters = X_train[:, indices] x_test_filters = X_test[ :, indices] # model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters) model = train_model(x_train_filters, y_train) y_test_model = model.predict(x_test_filters) y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ] test_roc_auc = roc_auc_score(y_test, y_test_predict) end = datetime.datetime.now() diff = end - start print("Real evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc)) return test_roc_auc def sub_evaluate(solution, index_number, targeted_indices): start = datetime.datetime.now() # get indices of filters data to use (filters selection from solution) indices = [] for index, value in enumerate(solution._data): if value == 1: indices.append(targeted_indices[index]) print(f'Training sub-model SVM n°{index_number} with {len(indices)} from {len(solution._data)} available features') # keep only selected filters from solution x_train_filters = X_train[:, indices] x_test_filters = X_test[ :, indices] # model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters) model = train_model(x_train_filters, y_train) y_test_model = model.predict(x_test_filters) y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ] test_roc_auc = roc_auc_score(y_test, y_test_predict) end = datetime.datetime.now() diff = end - start print(f"Real sub-evaluation n°{index_number} took: {divmod(diff.days * 86400 + diff.seconds, 60)}, score found: {test_roc_auc}") return test_roc_auc # build all output folder and files based on `output` name backup_model_folder = os.path.join(cfg.output_backup_folder, p_output) surrogate_output_model = os.path.join(cfg.output_surrogates_model_folder, p_output) surrogate_output_data = os.path.join(cfg.output_surrogates_data_folder, p_output) if not os.path.exists(backup_model_folder): os.makedirs(backup_model_folder) if not os.path.exists(cfg.output_surrogates_model_folder): os.makedirs(cfg.output_surrogates_model_folder) if not os.path.exists(cfg.output_surrogates_data_folder): os.makedirs(cfg.output_surrogates_data_folder) backup_file_path = os.path.join(backup_model_folder, p_output + '.csv') ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv') surrogate_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_train.csv') surrogate_k_indices_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_k_indices.csv') # prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation) operators = [SimpleBinaryMutation(), SimpleMutation()] #policy = UCBPolicy(operators) policy = RandomPolicy(operators) # custom start surrogate variable based on problem size p_start = int(problem_size / p_k_division * 2) # 2 \times number of features for each sub-model # fixed minimal number of real evaluations if p_start < 50: p_start = 50 print(f'Starting using surrogate after {p_start} reals training') # custom ILS for surrogate use algo = ILSMultiSpecificSurrogate(initalizer=init, evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function sub_evaluator=sub_evaluate, operators=operators, policy=policy, validator=validator, output_log_surrogates=os.path.join(cfg.output_surrogates_data_folder, 'logs', p_output), surrogates_file_path=surrogate_output_model, start_train_surrogates=p_start, # start learning and using surrogate after 1000 real evaluation solutions_folder=surrogate_output_data, ls_train_surrogates=p_every_ls, # retrain surrogate every `x` iteration k_division=p_k_division, k_dynamic=p_k_dynamic, k_random=p_k_random, generate_only=p_generate_only, maximise=True) algo.addCallback(BasicCheckpoint(every=1, filepath=backup_file_path)) #algo.addCallback(UCBCheckpoint(every=1, filepath=ucb_backup_file_path)) algo.addCallback(SurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_backup_file_path)) # try every LS like this algo.addCallback(MultiSurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_k_indices_backup_file_path)) # try every LS like this bestSol = algo.run(p_ils_iteration, p_ls_iteration) # print best solution found print("Found ", bestSol) # save model information into .csv file if not os.path.exists(cfg.results_information_folder): os.makedirs(cfg.results_information_folder) filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename) line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol._data) + ';' + str(list(bestSol._data).count(1)) + ';' + str(bestSol.fitness()) with open(filename_path, 'a') as f: f.write(line_info + '\n') print('Result saved into %s' % filename_path) if __name__ == "__main__": main()