# main imports import numpy as np import pandas as pd import sys, os, argparse # image processing from PIL import Image from ipfml import utils from ipfml.processing import transform, segmentation import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, VotingClassifier import joblib import sklearn.svm as svm from sklearn.utils import shuffle from sklearn.metrics import accuracy_score, roc_auc_score from sklearn.model_selection import cross_val_score # model imports import joblib # modules and config imports sys.path.insert(0, '') # trick to enable import of main folder module def write_progress(progress): barWidth = 180 output_str = "[" pos = barWidth * progress for i in range(barWidth): if i < pos: output_str = output_str + "=" elif i == pos: output_str = output_str + ">" else: output_str = output_str + " " output_str = output_str + "] " + str(int(progress * 100.0)) + " %\r" print(output_str) sys.stdout.write("\033[F") def loadDataset(filename, n_step = 20): ######################## # 1. Get and prepare data ######################## # scene_name; zone_id; image_index_end; label; data head, folder_data = os.path.split(filename) dataset_train = pd.read_csv(os.path.join(filename, folder_data + '.train'), header=None, sep=";") dataset_test = pd.read_csv(os.path.join(filename, folder_data + '.test'), header=None, sep=";") # default first shuffle of data dataset_train = shuffle(dataset_train) dataset_test = shuffle(dataset_test) dataset_train = dataset_train[dataset_train.iloc[:, 2] % n_step == 0] dataset_test = dataset_test[dataset_test.iloc[:, 2] % n_step == 0] # get dataset with equal number of classes occurences noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 1] not_noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 0] #nb_noisy_train = len(noisy_df_train.index) noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 1] not_noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 0] #nb_noisy_test = len(noisy_df_test.index) # use of all data final_df_train = pd.concat([not_noisy_df_train, noisy_df_train]) final_df_test = pd.concat([not_noisy_df_test, noisy_df_test]) # shuffle data another time final_df_train = shuffle(final_df_train) final_df_test = shuffle(final_df_test) # use of the whole data set for training x_dataset_train = final_df_train.iloc[:, 4:] x_dataset_test = final_df_test.iloc[:, 4:] y_dataset_train = final_df_train.iloc[:, 3] y_dataset_test = final_df_test.iloc[:, 3] return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test def train_model(p_data_file, p_solution): x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test = loadDataset(p_data_file) # get indices of filters data to use (filters selection from solution) indices = [] print(p_solution) for index, value in enumerate(p_solution): if value == 1: indices.append(index) print(f'Selected indices are: {indices}') print(f"Train dataset size {len(x_dataset_train)}") print(f"Test dataset size {len(x_dataset_test)}") x_dataset_train = x_dataset_train.iloc[:, indices] x_dataset_test = x_dataset_test.iloc[:, indices] print("-------------------------------------------") # model = mdl.get_trained_model(p_choice, x_dataset_train, y_dataset_train) model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1) model.fit(x_dataset_train, y_dataset_train) ####################### # 3. Fit model : use of cross validation to fit model ####################### val_scores = cross_val_score(model, x_dataset_train, y_dataset_train, cv=5) print("Accuracy: %0.2f (+/- %0.2f)" % (val_scores.mean(), val_scores.std() * 2)) ###################### # 4. Metrics ###################### y_train_model = model.predict(x_dataset_train) y_test_model = model.predict(x_dataset_test) train_accuracy = accuracy_score(y_dataset_train, y_train_model) test_accuracy = accuracy_score(y_dataset_test, y_test_model) train_auc = roc_auc_score(y_dataset_train, y_train_model) test_auc = roc_auc_score(y_dataset_test, y_test_model) ################### # 5. Output : Print and write all information in csv ################### print("Train dataset size ", len(x_dataset_train)) print("Train acc: ", train_accuracy) print("Train AUC: ", train_auc) print("Test dataset size ", len(x_dataset_test)) print("Test acc: ", test_accuracy) print("Test AUC: ", test_auc) return model def main(): parser = argparse.ArgumentParser(description="Read and compute entropy data file") # parser.add_argument('--solution', type=str, help='entropy file data with estimated threshold to read and compute') parser.add_argument('--data', type=str, help='dataset filename prefiloc (without .train and .test)', required=True) # parser.add_argument('--dataset', type=str, help='datasets file to load and predict from') parser.add_argument('--solution', type=str, help='Data of solution to specify filters to use') parser.add_argument('--output', type=str, help="output folder") args = parser.parse_args() # p_model = args.model p_data_file = args.data p_output = args.output p_solution = list(map(int, args.solution.split(' '))) # 2. load model and compile it model = train_model(p_data_file, p_solution) # begin prediction if not os.path.exists(p_output): os.makedirs(p_output) scene_predictions = {} data_lines = [] dataset_files = os.listdir(p_data_file) for filename in dataset_files: filename_path = os.path.join(p_data_file, filename) with open(filename_path, 'r') as f: for line in f.readlines(): data_lines.append(line) nlines = len(data_lines) ncounter = 0 for line in data_lines: data = line.split(';') scene_name = data[0] zone_index = int(data[1]) if scene_name not in scene_predictions: scene_predictions[scene_name] = [] for _ in range(16): scene_predictions[scene_name].append([]) # prepare input data # ToDo check data input input_data = [ l.replace('\n', '').split(' ') for l in data[4:] ] input_data = np.array([x for i, x in enumerate(input_data) if p_solution[i] == 1 ], 'float32').flatten() # print(input_data.flatten()) input_data = np.expand_dims(input_data, axis=0) prob = model.predict(input_data)[0] scene_predictions[scene_name][zone_index].append(prob) ncounter += 1 write_progress(float(ncounter / nlines)) # 6. save predictions results for key, blocks_predictions in scene_predictions.items(): output_file = os.path.join(p_output, key + '.csv') f = open(output_file, 'w') for i, data in enumerate(blocks_predictions): f.write(key + ';') f.write(str(i) + ';') for v in data: f.write(str(v) + ';') f.write('\n') f.close() if __name__== "__main__": main()