# main imports import os import sys import argparse import pandas as pd import numpy as np import logging import datetime import random # model imports from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, VotingClassifier import joblib import sklearn.svm as svm from sklearn.utils import shuffle from sklearn.metrics import roc_auc_score from sklearn.model_selection import cross_val_score # modules and config imports sys.path.insert(0, '') # trick to enable import of main folder module import custom_config as cfg import models as mdl from optimization.ILSPopSurrogate import ILSPopSurrogate from macop.solutions.discrete import BinarySolution from macop.evaluators.base import Evaluator from macop.operators.discrete.mutators import SimpleMutation from macop.operators.discrete.mutators import SimpleBinaryMutation from macop.operators.discrete.crossovers import SimpleCrossover from macop.operators.discrete.crossovers import RandomSplitCrossover from optimization.operators.SimplePopCrossover import SimplePopCrossover, RandomPopCrossover from macop.policies.reinforcement import UCBPolicy from macop.callbacks.classicals import BasicCheckpoint from macop.callbacks.policies import UCBCheckpoint from optimization.callbacks.MultiPopCheckpoint import MultiPopCheckpoint from optimization.callbacks.SurrogateMonoCheckpoint import SurrogateMonoCheckpoint #from sklearn.ensemble import RandomForestClassifier # variables and parameters models_list = cfg.models_names_list from warnings import simplefilter simplefilter("ignore") # default validator def validator(solution): # at least 5 attributes and at most 16 if list(solution.data).count(1) < 4 or list(solution.data).count(1) > 20: return False return True def loadDataset(filename): ######################## # 1. Get and prepare data ######################## # scene_name; zone_id; image_index_end; label; data dataset_train = pd.read_csv(filename + '.train', header=None, sep=";") dataset_test = pd.read_csv(filename + '.test', header=None, sep=";") # default first shuffle of data dataset_train = shuffle(dataset_train) dataset_test = shuffle(dataset_test) # get dataset with equal number of classes occurences noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 1] not_noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 0] #nb_noisy_train = len(noisy_df_train.index) noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 1] not_noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 0] #nb_noisy_test = len(noisy_df_test.index) # use of all data final_df_train = pd.concat([not_noisy_df_train, noisy_df_train]) final_df_test = pd.concat([not_noisy_df_test, noisy_df_test]) # shuffle data another time final_df_train = shuffle(final_df_train) final_df_test = shuffle(final_df_test) # use of the whole data set for training x_dataset_train = final_df_train.iloc[:, 4:] x_dataset_test = final_df_test.iloc[:, 4:] y_dataset_train = final_df_train.iloc[:, 3] y_dataset_test = final_df_test.iloc[:, 3] return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test def _get_best_model(X_train, y_train): Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000] gammas = [0.001, 0.01, 0.1, 5, 10, 100] param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas} svc = svm.SVC(probability=True, class_weight='balanced') #clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1) clf = GridSearchCV(svc, param_grid, cv=5, verbose=0, n_jobs=22) clf.fit(X_train, y_train) model = clf.best_estimator_ return model def main(): parser = argparse.ArgumentParser(description="Train and find best filters to use for model") parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True) parser.add_argument('--start_surrogate', type=int, help='number of evalution before starting surrogare model', required=True) parser.add_argument('--train_every', type=int, help='max number of evalution before retraining surrogare model', required=True) parser.add_argument('--length', type=int, help='max data length (need to be specify for evaluator)', required=True) parser.add_argument('--pop', type=int, help='pop size', required=True) parser.add_argument('--order', type=int, help='walsh order function', required=True) parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True) parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True) parser.add_argument('--output', type=str, help='output surrogate model name') args = parser.parse_args() p_data_file = args.data p_length = args.length p_pop = args.pop p_order = args.order p_start = args.start_surrogate p_retrain = args.train_every p_ils_iteration = args.ils p_ls_iteration = args.ls p_output = args.output print(p_data_file) # load data from file x_train, y_train, x_test, y_test = loadDataset(p_data_file) # create `logs` folder if necessary if not os.path.exists(cfg.output_logs_folder): os.makedirs(cfg.output_logs_folder) logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/{0}.log'.format(p_output), level=logging.DEBUG) # init solution (`n` attributes) def init(): return BinarySolution.random(p_length, validator) class ModelEvaluator(Evaluator): # define evaluate function here (need of data information) def compute(self, solution): print(f'Solution is composed of {list(solution.data).count(1)} attributes') start = datetime.datetime.now() # get indices of filters data to use (filters selection from solution) indices = [] for index, value in enumerate(solution.data): if value == 1: indices.append(index) # keep only selected filters from solution x_train_filters = self._data['x_train'].iloc[:, indices] y_train_filters = self._data['y_train'] x_test_filters = self._data['x_test'].iloc[:, indices] model = _get_best_model(x_train_filters, y_train_filters) # model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1) # model = model.fit(x_train_filters, y_train_filters) y_test_model = model.predict(x_test_filters) test_roc_auc = roc_auc_score(self._data['y_test'], y_test_model) end = datetime.datetime.now() diff = end - start print('----') print("Real evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc)) return test_roc_auc # build all output folder and files based on `output` name backup_model_folder = os.path.join(cfg.output_backup_folder, p_output) surrogate_output_model = os.path.join(cfg.output_surrogates_model_folder, p_output) surrogate_output_data = os.path.join(cfg.output_surrogates_data_folder, p_output) if not os.path.exists(backup_model_folder): os.makedirs(backup_model_folder) if not os.path.exists(cfg.output_surrogates_model_folder): os.makedirs(cfg.output_surrogates_model_folder) if not os.path.exists(cfg.output_surrogates_data_folder): os.makedirs(cfg.output_surrogates_data_folder) backup_file_path = os.path.join(backup_model_folder, p_output + '.csv') ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv') surrogate_performanche_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_performance.csv') # prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation) operators = [SimpleBinaryMutation(), SimpleMutation(), RandomPopCrossover(), SimplePopCrossover()] policy = UCBPolicy(operators, C=100, exp_rate=0.1) # define first line if necessary if not os.path.exists(surrogate_output_data): with open(surrogate_output_data, 'w') as f: f.write('x;y\n') # custom ILS for surrogate use algo = ILSPopSurrogate(initalizer=init, evaluator=ModelEvaluator(data={'x_train': x_train, 'y_train': y_train, 'x_test': x_test, 'y_test': y_test}), # same evaluator by default, as we will use the surrogate function operators=operators, policy=policy, validator=validator, population_size=p_pop, surrogate_file_path=surrogate_output_model, start_train_surrogate=p_start, # start learning and using surrogate after 1000 real evaluation solutions_file=surrogate_output_data, walsh_order=p_order, inter_policy_ls_file=os.path.join(backup_model_folder, p_output + '_ls_ucbPolicy.csv'), ls_train_surrogate=p_retrain, maximise=True) algo.addCallback(MultiPopCheckpoint(every=1, filepath=backup_file_path)) algo.addCallback(UCBCheckpoint(every=1, filepath=ucb_backup_file_path)) algo.addCallback(SurrogateMonoCheckpoint(every=1, filepath=surrogate_performanche_file_path)) bestSol = algo.run(p_ils_iteration, p_ls_iteration) # print best solution found print("Found ", bestSol) # save model information into .csv file if not os.path.exists(cfg.results_information_folder): os.makedirs(cfg.results_information_folder) filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename) filters_counter = 0 # count number of filters for index, item in enumerate(bestSol.data): if index != 0 and index % 2 == 1: # if two attributes are used if item == 1 or bestSol.data[index - 1] == 1: filters_counter += 1 line_info = p_output + ';' + p_data_file + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness) # check if results are already saved... already_saved = False if os.path.exists(filename_path): with open(filename_path, 'r') as f: lines = f.readlines() for line in lines: output_name = line.split(';')[0] if p_output == output_name: already_saved = True if not already_saved: with open(filename_path, 'a') as f: f.write(line_info + '\n') print('Result saved into %s' % filename_path) if __name__ == "__main__": main()