123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- from sklearn.externals import joblib
- import numpy as np
- from ipfml import processing, utils
- from PIL import Image
- import sys, os, getopt
- import subprocess
- import time
- from modules.utils import config as cfg
- config_filename = cfg.config_filename
- scenes_path = cfg.dataset_path
- min_max_filename = cfg.min_max_filename_extension
- threshold_expe_filename = cfg.seuil_expe_filename
- threshold_map_folder = cfg.threshold_map_folder
- threshold_map_file_prefix = cfg.threshold_map_folder + "_"
- zones = cfg.zones_indices
- tmp_filename = '/tmp/__model__img_to_predict.png'
- current_dirpath = os.getcwd()
- def main():
- p_custom = False
- # TODO : use of argparse
-
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python predict_seuil_expe.py --interval "0,20" --model path/to/xxxx.joblib --mode svdn --metric lab --limit_detection xx --custom min_max_filename')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "ht:m:o:l:c", ["help=", "interval=", "model=", "mode=", "metric=" "limit_detection=", "custom="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python predict_seuil_expe.py --interval "xx,xx" --model path/to/xxxx.joblib --mode svdn --metric lab --limit_detection xx --custom min_max_filename')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python predict_seuil_expe.py --interval "xx,xx" --model path/to/xxxx.joblib --mode svdn --metric lab --limit_detection xx --custom min_max_filename')
- sys.exit()
- elif o in ("-t", "--interval"):
- p_interval = a
- elif o in ("-mo", "--model"):
- p_model_file = a
- elif o in ("-o", "--mode"):
- p_mode = a
- if p_mode != 'svdn' and p_mode != 'svdne' and p_mode != 'svd':
- assert False, "Mode not recognized"
- elif o in ("-me", "--metric"):
- p_metric = a
- elif o in ("-l", "--limit_detection"):
- p_limit = int(a)
- elif o in ("-c", "--custom"):
- p_custom = a
- else:
- assert False, "unhandled option"
- scenes = os.listdir(scenes_path)
- scenes = [s for s in scenes if not min_max_filename in s]
- # go ahead each scenes
- for id_scene, folder_scene in enumerate(scenes):
- print(folder_scene)
- scene_path = os.path.join(scenes_path, folder_scene)
- config_path = os.path.join(scene_path, config_filename)
- with open(config_path, "r") as config_file:
- last_image_name = config_file.readline().strip()
- prefix_image_name = config_file.readline().strip()
- start_index_image = config_file.readline().strip()
- end_index_image = config_file.readline().strip()
- step_counter = int(config_file.readline().strip())
- threshold_expes = []
- threshold_expes_detected = []
- threshold_expes_counter = []
- threshold_expes_found = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- zone_folder = "zone"+index_str
- threshold_path_file = os.path.join(os.path.join(scene_path, zone_folder), threshold_expe_filename)
- with open(threshold_path_file) as f:
- threshold = int(f.readline())
- threshold_expes.append(threshold)
- # Initialize default data to get detected model threshold found
- threshold_expes_detected.append(False)
- threshold_expes_counter.append(0)
- threshold_expes_found.append(int(end_index_image)) # by default use max
- current_counter_index = int(start_index_image)
- end_counter_index = int(end_index_image)
- print(current_counter_index)
- check_all_done = False
- while(current_counter_index <= end_counter_index and not check_all_done):
- current_counter_index_str = str(current_counter_index)
- while len(start_index_image) > len(current_counter_index_str):
- current_counter_index_str = "0" + current_counter_index_str
- img_path = os.path.join(scene_path, prefix_image_name + current_counter_index_str + ".png")
- current_img = Image.open(img_path)
- img_blocks = processing.divide_in_blocks(current_img, (200, 200))
- check_all_done = all(d == True for d in threshold_expes_detected)
- for id_block, block in enumerate(img_blocks):
- # check only if necessary for this scene (not already detected)
- if not threshold_expes_detected[id_block]:
- tmp_file_path = tmp_filename.replace('__model__', p_model_file.split('/')[-1].replace('.joblib', '_'))
- block.save(tmp_file_path)
- python_cmd = "python predict_noisy_image_svd.py --image " + tmp_file_path + \
- " --interval '" + p_interval + \
- "' --model " + p_model_file + \
- " --mode " + p_mode + \
- " --metric " + p_metric
- # specify use of custom file for min max normalization
- if p_custom:
- python_cmd = python_cmd + ' --custom ' + p_custom
- ## call command ##
- p = subprocess.Popen(python_cmd, stdout=subprocess.PIPE, shell=True)
- (output, err) = p.communicate()
- ## Wait for result ##
- p_status = p.wait()
- prediction = int(output)
- if prediction == 0:
- threshold_expes_counter[id_block] = threshold_expes_counter[id_block] + 1
- else:
- threshold_expes_counter[id_block] = 0
- if threshold_expes_counter[id_block] == p_limit:
- threshold_expes_detected[id_block] = True
- threshold_expes_found[id_block] = current_counter_index
- print(str(id_block) + " : " + str(current_counter_index) + "/" + str(threshold_expes[id_block]) + " => " + str(prediction))
- current_counter_index += step_counter
- print("------------------------")
- print("Scene " + str(id_scene + 1) + "/" + str(len(scenes)))
- print("------------------------")
- # end of scene => display of results
- # construct path using model name for saving threshold map folder
- model_treshold_path = os.path.join(threshold_map_folder, p_model_file.split('/')[-1].replace('.joblib', ''))
- # create threshold model path if necessary
- if not os.path.exists(model_treshold_path):
- os.makedirs(model_treshold_path)
- abs_dist = []
- map_filename = os.path.join(model_treshold_path, threshold_map_file_prefix + folder_scene)
- f_map = open(map_filename, 'w')
- line_information = ""
- # default header
- f_map.write('| | | | |\n')
- f_map.write('---|----|----|---\n')
- for id, threshold in enumerate(threshold_expes_found):
- line_information += str(threshold) + " / " + str(threshold_expes[id]) + " | "
- abs_dist.append(abs(threshold - threshold_expes[id]))
- if (id + 1) % 4 == 0:
- f_map.write(line_information + '\n')
- line_information = ""
- f_map.write(line_information + '\n')
- min_abs_dist = min(abs_dist)
- max_abs_dist = max(abs_dist)
- avg_abs_dist = sum(abs_dist) / len(abs_dist)
- f_map.write('\nScene information : ')
- f_map.write('\n- BEGIN : ' + str(start_index_image))
- f_map.write('\n- END : ' + str(end_index_image))
- f_map.write('\n\nDistances information : ')
- f_map.write('\n- MIN : ' + str(min_abs_dist))
- f_map.write('\n- MAX : ' + str(max_abs_dist))
- f_map.write('\n- AVG : ' + str(avg_abs_dist))
- f_map.write('\n\nOther information : ')
- f_map.write('\n- Detection limit : ' + str(p_limit))
- # by default print last line
- f_map.close()
- print("Scene " + str(id_scene + 1) + "/" + str(len(scenes)) + " Done..")
- print("------------------------")
- time.sleep(10)
- if __name__== "__main__":
- main()
|