from ipfml import image_processing from PIL import Image import numpy as np from ipfml import metrics from skimage import color import cv2 path_noisy = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_00050.png' path_threshold = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_00400.png' path_ref = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_01200.png' path_list = [path_noisy, path_threshold, path_ref] labels = ['noisy', 'threshold', 'reference'] for id, p in enumerate(path_list): img = Image.open(p) img.show() # Revisited MSCN current_img_mscn = image_processing.rgb_to_mscn(img) current_img_output = current_img_mscn.astype('uint8') img_mscn_pil = Image.fromarray(current_img_output.astype('uint8'), 'L') img_mscn_pil.show() img_mscn_pil.save('/home/jbuisine/Downloads/' + labels[id] + '_revisited.png') # MSCN img_grey = np.array(color.rgb2gray(np.asarray(img))*255, 'uint8') img_mscn_in_grey = np.array(image_processing.normalize_2D_arr(image_processing.calculate_mscn_coefficients(img_grey, 7))*255, 'uint8') img_mscn_pil = Image.fromarray(img_mscn_in_grey.astype('uint8'), 'L') img_mscn_pil.show() img_mscn_pil.save('/home/jbuisine/Downloads/' + labels[id] + '_mscn.png')