from sklearn.externals import joblib import numpy as np import pandas as pd from sklearn.metrics import accuracy_score from keras.models import Sequential from keras.layers import Conv1D, MaxPooling1D from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization from keras import backend as K from keras.models import model_from_json from keras.wrappers.scikit_learn import KerasClassifier import sys, os, argparse import json from modules.utils import config as cfg output_model_folder = cfg.saved_models_folder def main(): parser = argparse.ArgumentParser(description="Give model performance on specific scene") parser.add_argument('--data', type=str, help='dataset filename prefix of specific scene (without .train and .test)') parser.add_argument('--model', type=str, help='saved model (Keras or SKlearn) filename with extension') parser.add_argument('--output', type=str, help="filename to store predicted and performance model obtained on scene") parser.add_argument('--scene', type=str, help="scene indice to predict", choices=cfg.scenes_indices) args = parser.parse_args() p_data_file = args.data p_model_file = args.model p_output = args.output p_scene = args.scene if '.joblib' in p_model_file: kind_model = 'sklearn' model_ext = '.joblib' if '.json' in p_model_file: kind_model = 'keras' model_ext = '.json' if not os.path.exists(output_model_folder): os.makedirs(output_model_folder) dataset = pd.read_csv(p_data_file, header=None, sep=";") y_dataset = dataset.ix[:,0] x_dataset = dataset.ix[:,1:] noisy_dataset = dataset[dataset.ix[:, 0] == 1] not_noisy_dataset = dataset[dataset.ix[:, 0] == 0] y_noisy_dataset = noisy_dataset.ix[:, 0] x_noisy_dataset = noisy_dataset.ix[:, 1:] y_not_noisy_dataset = not_noisy_dataset.ix[:, 0] x_not_noisy_dataset = not_noisy_dataset.ix[:, 1:] if kind_model == 'keras': with open(p_model_file, 'r') as f: json_model = json.load(f) model = model_from_json(json_model) model.load_weights(p_model_file.replace('.json', '.h5')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) _, vector_size = np.array(x_dataset).shape # reshape all data x_dataset = np.array(x_dataset).reshape(len(x_dataset), vector_size, 1) x_noisy_dataset = np.array(x_noisy_dataset).reshape(len(x_noisy_dataset), vector_size, 1) x_not_noisy_dataset = np.array(x_not_noisy_dataset).reshape(len(x_not_noisy_dataset), vector_size, 1) if kind_model == 'sklearn': model = joblib.load(p_model_file) if kind_model == 'keras': y_pred = model.predict_classes(x_dataset) y_noisy_pred = model.predict_classes(x_noisy_dataset) y_not_noisy_pred = model.predict_classes(x_not_noisy_dataset) if kind_model == 'sklearn': y_pred = model.predict(x_dataset) y_noisy_pred = model.predict(x_noisy_dataset) y_not_noisy_pred = model.predict(x_not_noisy_dataset) accuracy_global = accuracy_score(y_dataset, y_pred) accuracy_noisy = accuracy_score(y_noisy_dataset, y_noisy_pred) accuracy_not_noisy = accuracy_score(y_not_noisy_dataset, y_not_noisy_pred) if(p_scene): print(p_scene + " | " + str(accuracy_global) + " | " + str(accuracy_noisy) + " | " + str(accuracy_not_noisy)) else: print(str(accuracy_global) + " \t | " + str(accuracy_noisy) + " \t | " + str(accuracy_not_noisy)) with open(p_output, 'w') as f: f.write("Global accuracy found %s " % str(accuracy_global)) f.write("Noisy accuracy found %s " % str(accuracy_noisy)) f.write("Not noisy accuracy found %s " % str(accuracy_not_noisy)) for prediction in y_pred: f.write(str(prediction) + '\n') if __name__== "__main__": main()