from sklearn.externals import joblib import numpy as np from ipfml import processing, utils from PIL import Image import sys, os, argparse, json from keras.models import model_from_json from modules.utils import config as cfg from modules.utils import data as dt path = cfg.dataset_path min_max_ext = cfg.min_max_filename_extension metric_choices = cfg.metric_choices_labels normalization_choices = cfg.normalization_choices custom_min_max_folder = cfg.min_max_custom_folder def main(): # getting all params parser = argparse.ArgumentParser(description="Script which detects if an image is noisy or not using specific model") parser.add_argument('--image', type=str, help='Image path') parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"') parser.add_argument('--model', type=str, help='.joblib or .json file (sklearn or keras model)') parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=normalization_choices) parser.add_argument('--metric', type=str, help='Metric data choice', choices=metric_choices) parser.add_argument('--custom', type=str, help='Name of custom min max file if use of renormalization of data', default=False) args = parser.parse_args() p_img_file = args.image p_model_file = args.model p_interval = list(map(int, args.interval.split(','))) p_mode = args.mode p_metric = args.metric p_custom = args.custom if '.joblib' in p_model_file: kind_model = 'sklearn' if '.json' in p_model_file: kind_model = 'keras' if 'corr' in p_model_file: corr_model = True indices_corr_path = os.path.join(cfg.correlation_indices_folder, p_model_file.split('/')[1].replace('.json', '').replace('.joblib', '') + '.csv') with open(indices_corr_path, 'r') as f: data_corr_indices = [int(x) for x in f.readline().split(';') if x != ''] else: corr_model = False if kind_model == 'sklearn': # load of model file model = joblib.load(p_model_file) if kind_model == 'keras': with open(p_model_file, 'r') as f: json_model = json.load(f) model = model_from_json(json_model) model.load_weights(p_model_file.replace('.json', '.h5')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # load image img = Image.open(p_img_file) data = dt.get_svd_data(p_metric, img) # get interval values begin, end = p_interval # check if custom min max file is used if p_custom: if corr_model: test_data = data[data_corr_indices] else: test_data = data[begin:end] if p_mode == 'svdne': # set min_max_filename if custom use min_max_file_path = custom_min_max_folder + '/' + p_custom # need to read min_max_file file_path = os.path.join(os.path.dirname(__file__), min_max_file_path) with open(file_path, 'r') as f: min_val = float(f.readline().replace('\n', '')) max_val = float(f.readline().replace('\n', '')) test_data = utils.normalize_arr_with_range(test_data, min_val, max_val) if p_mode == 'svdn': test_data = utils.normalize_arr(test_data) else: # check mode to normalize data if p_mode == 'svdne': # set min_max_filename if custom use min_max_file_path = path + '/' + p_metric + min_max_ext # need to read min_max_file file_path = os.path.join(os.path.dirname(__file__), min_max_file_path) with open(file_path, 'r') as f: min_val = float(f.readline().replace('\n', '')) max_val = float(f.readline().replace('\n', '')) l_values = utils.normalize_arr_with_range(data, min_val, max_val) elif p_mode == 'svdn': l_values = utils.normalize_arr(data) else: l_values = data if corr_model: test_data = data[data_corr_indices] else: test_data = data[begin:end] # get prediction of model if kind_model == 'sklearn': prediction = model.predict([test_data])[0] if kind_model == 'keras': test_data = np.asarray(test_data).reshape(1, len(test_data), 1) prediction = model.predict_classes([test_data])[0][0] # output expected from others scripts print(prediction) if __name__== "__main__": main()