from sklearn.externals import joblib import numpy as np from ipfml import processing from PIL import Image import sys, os, getopt from modules.utils import config as cfg from modules.utils import data as dt path = cfg.dataset_path min_max_ext = cfg.min_max_filename_extension metric_choices = cfg.metric_choices_labels normalization_choices = cfg.normalization_choices custom_min_max_folder = cfg.min_max_custom_folder def main(): p_custom = False if len(sys.argv) <= 1: print('Run with default parameters...') print('python predict_noisy_image_svd.py --image path/to/xxxx --interval "0,20" --model path/to/xxxx.joblib --metric lab --mode ["svdn", "svdne"] --custom min_max_file') sys.exit(2) try: opts, args = getopt.getopt(sys.argv[1:], "hi:t:m:m:o:c", ["help=", "image=", "interval=", "model=", "metric=", "mode=", "custom="]) except getopt.GetoptError: # print help information and exit print('python predict_noisy_image_svd_lab.py --image path/to/xxxx --interval "xx,xx" --model path/to/xxxx.joblib --metric lab --mode ["svdn", "svdne"] --custom min_max_file') sys.exit(2) for o, a in opts: if o == "-h": print('python predict_noisy_image_svd_lab.py --image path/to/xxxx --interval "xx,xx" --model path/to/xxxx.joblib --metric lab --mode ["svdn", "svdne"] --custom min_max_file') sys.exit() elif o in ("-i", "--image"): p_img_file = os.path.join(os.path.dirname(__file__), a) elif o in ("-t", "--interval"): p_interval = list(map(int, a.split(','))) elif o in ("-m", "--model"): p_model_file = os.path.join(os.path.dirname(__file__), a) elif o in ("-m", "--metric"): p_metric = a if not p_metric in metric_choices: assert False, "Unknow metric choice" elif o in ("-o", "--mode"): p_mode = a if not p_mode in normalization_choices: assert False, "Mode of normalization not recognized" elif o in ("-c", "--custom"): p_custom = a else: assert False, "unhandled option" # load of model file model = joblib.load(p_model_file) # load image img = Image.open(p_img_file) data = dt.get_svd_data(p_metric, img) # get interval values begin, end = p_interval # check if custom min max file is used if p_custom: test_data = data[begin:end] if p_mode == 'svdne': # set min_max_filename if custom use min_max_file_path = custom_min_max_folder + '/' + p_custom # need to read min_max_file file_path = os.path.join(os.path.dirname(__file__), min_max_file_path) with open(file_path, 'r') as f: min_val = float(f.readline().replace('\n', '')) max_val = float(f.readline().replace('\n', '')) test_data = processing.normalize_arr_with_range(test_data, min_val, max_val) if p_mode == 'svdn': test_data = processing.normalize_arr(test_data) else: # check mode to normalize data if p_mode == 'svdne': # set min_max_filename if custom use min_max_file_path = path + '/' + p_metric + min_max_ext # need to read min_max_file file_path = os.path.join(os.path.dirname(__file__), min_max_file_path) with open(file_path, 'r') as f: min_val = float(f.readline().replace('\n', '')) max_val = float(f.readline().replace('\n', '')) l_values = processing.normalize_arr_with_range(data, min_val, max_val) elif p_mode == 'svdn': l_values = processing.normalize_arr(data) else: l_values = data test_data = l_values[begin:end] # get prediction of model prediction = model.predict([test_data])[0] # output expected from others scripts print(prediction) if __name__== "__main__": main()