#! bin/bash # file which contains model names we want to use for simulation simulate_models="simulate_models_keras.csv" # selection of four scenes (only maxwell) scenes="A, D, G, H" start_index=0 metrics_size=( ["sub_blocks_stats"]=24 ["sub_blocks_stats_reduced"]=20 ["sub_blocks_area"]=16 ["sub_blocks_area_normed"]=20) for metric in {"sub_blocks_stats","sub_blocks_stats_reduced","sub_blocks_area","sub_blocks_area_normed"}; do for nb_zones in {4,6,8,10,12}; do for mode in {"svd","svdn","svdne"}; do end_index=${metrics_size[${metric}]} FILENAME="data/deep_keras_N${end_index}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${metric}_${mode}" MODEL_NAME="deep_keras_N${end_index}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${metric}_${mode}" CUSTOM_MIN_MAX_FILENAME="N${size}_B${start_index}_E${end_index}_nb_zones_${nb_zones}_${metric}_${mode}_min_max" if grep -xq "${MODEL_NAME}" "${simulate_models}"; then echo "Run simulation for model ${MODEL_NAME}" # by default regenerate model python generate/generate_data_model_random.py --output ${FILENAME} --interval "${start_index},${end_index}" --kind ${mode} --metric ${metric} --scenes "${scenes}" --nb_zones "${nb_zones}" --percent 1 --renderer "maxwell" --step 40 --random 1 --custom ${CUSTOM_MIN_MAX_FILENAME} python train_model.py --data ${FILENAME} --output ${MODEL_NAME} --choice ${model} python predict_seuil_expe_maxwell_curve.py --interval "${start_index},${end_index}" --model "saved_models/${MODEL_NAME}.json" --mode "${mode}" --metric ${metric} --limit_detection '2' --custom ${CUSTOM_MIN_MAX_FILENAME} python others/save_model_result_in_md_maxwell.py --interval "${start_index},${end_index}" --model "saved_models/${MODEL_NAME}.json" --mode "${mode}" --metric ${metric} fi done done done