#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Sep 14 21:02:42 2018 @author: jbuisine """ from __future__ import print_function import sys, os, getopt import numpy as np import random import time import json from PIL import Image from ipfml import processing, metrics from modules.utils import config as cfg from modules.utils import data as dt # getting configuration information config_filename = cfg.config_filename zone_folder = cfg.zone_folder min_max_filename = cfg.min_max_filename_extension # define all scenes values all_scenes_list = cfg.scenes_names all_scenes_indices = cfg.scenes_indices choices = cfg.normalization_choices path = cfg.dataset_path zones = cfg.zones_indices seuil_expe_filename = cfg.seuil_expe_filename metric_choices = cfg.metric_choices_labels output_data_folder = cfg.output_data_folder custom_min_max_folder = cfg.min_max_custom_folder min_max_ext = cfg.min_max_filename_extension generic_output_file_svd = '_random.csv' min_value_interval = sys.maxsize max_value_interval = 0 def construct_new_line(path_seuil, interval, line, choice, norm): begin, end = interval line_data = line.split(';') seuil = line_data[0] metrics = line_data[begin+1:end+1] metrics = [float(m) for m in metrics] # TODO : check if it's always necessary to do that (loss of information for svd) if norm: if choice == 'svdne': metrics = processing.normalize_arr_with_range(metrics, min_value_interval, max_value_interval) if choice == 'svdn': metrics = processing.normalize_arr(metrics) with open(path_seuil, "r") as seuil_file: seuil_learned = int(seuil_file.readline().strip()) if seuil_learned > int(seuil): line = '1' else: line = '0' for idx, val in enumerate(metrics): line += ';' line += str(val) line += '\n' return line def get_min_max_value_interval(_scenes_list, _filename, _interval, _choice, _metric): global min_value_interval, max_value_interval scenes = os.listdir(path) # remove min max file from scenes folder scenes = [s for s in scenes if min_max_filename not in s] for id_scene, folder_scene in enumerate(scenes): # only take care of maxwell scenes if folder_scene in _scenes_list: scene_path = os.path.join(path, folder_scene) zones_folder = [] # create zones list for index in zones: index_str = str(index) if len(index_str) < 2: index_str = "0" + index_str zones_folder.append("zone"+index_str) # shuffle list of zones (=> randomly choose zones) random.shuffle(zones_folder) for id_zone, zone_folder in enumerate(zones_folder): zone_path = os.path.join(scene_path, zone_folder) data_filename = _metric + "_" + _choice + generic_output_file_svd data_file_path = os.path.join(zone_path, data_filename) # getting number of line and read randomly lines f = open(data_file_path) lines = f.readlines() counter = 0 # check if user select current scene and zone to be part of training data set for line in lines: begin, end = _interval line_data = line.split(';') metrics = line_data[begin+1:end+1] metrics = [float(m) for m in metrics] min_value = min(metrics) max_value = max(metrics) if min_value < min_value_interval: min_value_interval = min_value if max_value > max_value_interval: max_value_interval = max_value counter += 1 def generate_data_model(_scenes_list, _filename, _interval, _choice, _metric, _scenes, _nb_zones = 4, _percent = 1, _random=0, _step=1, _norm = False): output_train_filename = _filename + ".train" output_test_filename = _filename + ".test" if not '/' in output_train_filename: raise Exception("Please select filename with directory path to save data. Example : data/dataset") # create path if not exists if not os.path.exists(output_data_folder): os.makedirs(output_data_folder) scenes = os.listdir(path) # remove min max file from scenes folder scenes = [s for s in scenes if min_max_filename not in s] train_file_data = [] test_file_data = [] for id_scene, folder_scene in enumerate(scenes): # only take care of maxwell scenes if folder_scene in _scenes_list: scene_path = os.path.join(path, folder_scene) zones_folder = [] # create zones list for index in zones: index_str = str(index) if len(index_str) < 2: index_str = "0" + index_str zones_folder.append("zone"+index_str) # shuffle list of zones (=> randomly choose zones) # only in random mode if _random: random.shuffle(zones_folder) for id_zone, zone_folder in enumerate(zones_folder): zone_path = os.path.join(scene_path, zone_folder) data_filename = _metric + "_" + _choice + generic_output_file_svd data_file_path = os.path.join(zone_path, data_filename) # getting number of line and read randomly lines f = open(data_file_path) lines = f.readlines() num_lines = len(lines) # randomly shuffle image if _random: random.shuffle(lines) path_seuil = os.path.join(zone_path, seuil_expe_filename) counter = 0 # check if user select current scene and zone to be part of training data set for data in lines: percent = counter / num_lines image_index = int(data.split(';')[0]) if image_index % _step == 0: line = construct_new_line(path_seuil, _interval, data, _choice, _norm, _sep, _index) if id_zone < _nb_zones and folder_scene in _scenes and percent <= _percent: train_file_data.append(line) else: test_file_data.append(line) counter += 1 f.close() train_file = open(output_train_filename, 'w') test_file = open(output_test_filename, 'w') for line in train_file_data: train_file.write(line) for line in test_file_data: test_file_data.write(line) train_file.close() test_file.close() def main(): p_custom = False p_step = 1 p_renderer = 'all' if len(sys.argv) <= 1: print('Run with default parameters...') print('python generate_data_model.py --output xxxx --interval 0,20 --kind svdne --metric lab --scenes "A, B, D" --nb_zones 5 --random 1 --percent 0.7 --step 10 renderer all --custom min_max_filename') sys.exit(2) try: opts, args = getopt.getopt(sys.argv[1:], "ho:i:k:s:n:r:p:s:r:c", ["help=", "output=", "interval=", "kind=", "metric=","scenes=", "nb_zones=", "random=", "percent=", "step=", "renderer=", "custom="]) except getopt.GetoptError: # print help information and exit: print('python generate_data_model.py --output xxxx --interval 0,20 --kind svdne --metric lab --scenes "A, B, D" --nb_zones 5 --random 1 --percent 0.7 --step 10 --renderer all --custom min_max_filename') sys.exit(2) for o, a in opts: if o == "-h": print('python generate_data_model.py --output xxxx --interval 0,20 --kind svdne --metric lab --scenes "A, B, D" --nb_zones 5 --random 1 --percent 0.7 --step 10 --renderer all --custom min_max_filename') sys.exit() elif o in ("-o", "--output"): p_filename = a elif o in ("-i", "--interval"): p_interval = list(map(int, a.split(','))) elif o in ("-k", "--kind"): p_kind = a elif o in ("-m", "--metric"): p_metric = a elif o in ("-s", "--scenes"): p_scenes = a.split(',') elif o in ("-n", "--nb_zones"): p_nb_zones = int(a) elif o in ("-r", "--random"): p_random = int(a) elif o in ("-p", "--percent"): p_percent = float(a) elif o in ("-s", "--sep"): p_sep = a elif o in ("-s", "--step"): p_step = int(a) elif o in ("-r", "--renderer"): p_renderer = a if p_renderer not in cfg.renderer_choices: assert False, "Unknown renderer choice, %s" % cfg.renderer_choices elif o in ("-c", "--custom"): p_custom = a else: assert False, "unhandled option" # list all possibles choices of renderer scenes_list = dt.get_renderer_scenes_names(p_renderer) scenes_indices = dt.get_renderer_scenes_indices(p_renderer) # getting scenes from indexes user selection scenes_selected = [] for scene_id in p_scenes: index = scenes_indices.index(scene_id.strip()) scenes_selected.append(scenes_list[index]) # find min max value if necessary to renormalize data if p_custom: get_min_max_value_interval(scenes_list, p_filename, p_interval, p_kind, p_metric) # write new file to save if not os.path.exists(custom_min_max_folder): os.makedirs(custom_min_max_folder) min_max_folder_path = os.path.join(os.path.dirname(__file__), custom_min_max_folder) min_max_filename_path = os.path.join(min_max_folder_path, p_custom) with open(min_max_filename_path, 'w') as f: f.write(str(min_value_interval) + '\n') f.write(str(max_value_interval) + '\n') # create database using img folder (generate first time only) generate_data_model(scenes_list, p_filename, p_interval, p_kind, p_metric, scenes_selected, p_nb_zones, p_percent, p_random, p_step, p_custom) if __name__== "__main__": main()