# main imports import sys, os, argparse import numpy as np # image processing imports from PIL import Image import matplotlib.pyplot as plt from data_attributes import get_svd_data from ipfml.processing import segmentation import ipfml.iqa.fr as fr_iqa from ipfml import utils # modules and config imports sys.path.insert(0, '') # trick to enable import of main folder module import custom_config as cfg from modules.utils import data as dt # getting configuration information zone_folder = cfg.zone_folder min_max_filename = cfg.min_max_filename_extension # define all scenes values scenes_list = cfg.scenes_names scenes_indices = cfg.scenes_indices choices = cfg.normalization_choices path = cfg.dataset_path zones = cfg.zones_indices seuil_expe_filename = cfg.seuil_expe_filename features_choices = cfg.features_choices_labels generic_output_file_svd = '_random.csv' max_nb_bits = 8 min_value_interval = sys.maxsize max_value_interval = 0 def get_min_max_value_interval(_scene, _interval, _feature): global min_value_interval, max_value_interval scenes = os.listdir(path) # remove min max file from scenes folder scenes = [s for s in scenes if min_max_filename not in s] for folder_scene in scenes: # only take care of current scene if folder_scene == _scene: scene_path = os.path.join(path, folder_scene) zones_folder = [] # create zones list for index in zones: index_str = str(index) if len(index_str) < 2: index_str = "0" + index_str zones_folder.append("zone"+index_str) for zone_folder in zones_folder: zone_path = os.path.join(scene_path, zone_folder) data_filename = _feature + "_svd" + generic_output_file_svd data_file_path = os.path.join(zone_path, data_filename) # getting number of line and read randomly lines f = open(data_file_path) lines = f.readlines() # check if user select current scene and zone to be part of training data set for line in lines: begin, end = _interval line_data = line.split(';') features = line_data[begin+1:end+1] features = [float(m) for m in features] min_value = min(features) max_value = max(features) if min_value < min_value_interval: min_value_interval = min_value if max_value > max_value_interval: max_value_interval = max_value def display_svd_values(p_scene, p_interval, p_indices, p_zone, p_feature, p_mode, p_step, p_norm, p_ylim): """ @brief Method which gives information about svd curves from zone of picture @param p_scene, scene expected to show svd values @param p_interval, interval [begin, end] of svd data to display @param p_interval, interval [begin, end] of samples or minutes from render generation engine @param p_zone, zone's identifier of picture @param p_feature, feature computed to show @param p_mode, normalization's mode @param p_step, step of images indices @param p_norm, normalization or not of selected svd data @param p_ylim, ylim choice to better display of data @return nothing """ scenes = os.listdir(path) # remove min max file from scenes folder scenes = [s for s in scenes if min_max_filename not in s] begin_data, end_data = p_interval begin_index, end_index = p_indices data_min_max_filename = os.path.join(path, p_feature + min_max_filename) # go ahead each scenes for folder_scene in scenes: if p_scene == folder_scene: scene_path = os.path.join(path, folder_scene) # construct each zones folder name zones_folder = [] # get zones list info for index in zones: index_str = str(index) if len(index_str) < 2: index_str = "0" + index_str current_zone = "zone"+index_str zones_folder.append(current_zone) zones_images_data = [] images_path = [] zone_folder = zones_folder[p_zone] zone_path = os.path.join(scene_path, zone_folder) # get threshold information path_seuil = os.path.join(zone_path, seuil_expe_filename) # open treshold path and get this information with open(path_seuil, "r") as seuil_file: seuil_learned = int(seuil_file.readline().strip()) threshold_image_found = False # get all images of folder scene_images = sorted([os.path.join(scene_path, img) for img in os.listdir(scene_path) if cfg.scene_image_extension in img]) # for each images for img_path in scene_images: current_quality_image = dt.get_scene_image_quality(img_path) if current_quality_image % p_step == 0: if current_quality_image >= begin_index and current_quality_image <= end_index: images_path.append(dt.get_scene_image_postfix(img_path)) if seuil_learned < current_quality_image and not threshold_image_found: threshold_image_found = True threshold_image_zone = dt.get_scene_image_postfix(img_path) for img_path in images_path: current_img = Image.open(img_path) img_blocks = segmentation.divide_in_blocks(current_img, (200, 200)) # getting expected block id block = img_blocks[p_zone] # get data from mode # Here you can add the way you compute data data = get_svd_data(p_feature, block) # TODO : improve part of this code to get correct min / max values if p_norm: data = data[begin_data:end_data] ################## # Data mode part # ################## if p_mode == 'svdne': # getting max and min information from min_max_filename if not p_norm: with open(data_min_max_filename, 'r') as f: min_val = float(f.readline()) max_val = float(f.readline()) else: min_val = min_value_interval max_val = max_value_interval data = utils.normalize_arr_with_range(data, min_val, max_val) if p_mode == 'svdn': data = utils.normalize_arr(data) if not p_norm: zones_images_data.append(data[begin_data:end_data]) else: zones_images_data.append(data) plt.title(p_scene + ' scene interval information SVD['+ str(begin_data) +', '+ str(end_data) +'], from scenes indices [' + str(begin_index) + ', '+ str(end_index) + ']' + p_feature + ' feature, ' + p_mode + ', with step of ' + str(p_step) + ', svd norm ' + str(p_norm), fontsize=20) plt.ylabel('Image samples or time (minutes) generation', fontsize=14) plt.xlabel('Vector features', fontsize=16) for id, data in enumerate(zones_images_data): p_label = p_scene + "_" + images_path[id] if images_path[id] == threshold_image_zone: plt.plot(data, label=p_label, lw=4, color='red') else: plt.plot(data, label=p_label) plt.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.2, fontsize=14) start_ylim, end_ylim = p_ylim plt.ylim(start_ylim, end_ylim) plt.show() def main(): parser = argparse.ArgumentParser(description="Display SVD data of scene zone") parser.add_argument('--scene', type=str, help='scene index to use', choices=cfg.scenes_indices) parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"') parser.add_argument('--indices', type=str, help='Samples interval to display', default='"0, 900"') parser.add_argument('--zone', type=int, help='Zone to display', choices=list(range(0, 16))) parser.add_argument('--feature', type=str, help='feature data choice', choices=features_choices) parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=cfg.normalization_choices) parser.add_argument('--step', type=int, help='Each step samples to display', default=10) parser.add_argument('--norm', type=int, help='If values will be normalized or not', choices=[0, 1]) parser.add_argument('--ylim', type=str, help='ylim interval to use', default='"0, 1"') args = parser.parse_args() p_scene = scenes_list[scenes_indices.index(args.scene)] p_indices = list(map(int, args.indices.split(','))) p_interval = list(map(int, args.interval.split(','))) p_zone = args.zone p_feature = args.feature p_mode = args.mode p_step = args.step p_norm = args.norm p_ylim = list(map(int, args.ylim.split(','))) display_svd_values(p_scene, p_interval, p_indices, p_zone, p_feature, p_mode, p_step, p_norm, p_ylim) if __name__== "__main__": main()