123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- from ipfml import processing, metrics, utils
- from modules.utils.config import *
- from PIL import Image
- from skimage import color
- from sklearn.decomposition import FastICA
- from sklearn.decomposition import IncrementalPCA
- from sklearn.decomposition import TruncatedSVD
- from numpy.linalg import svd as lin_svd
- import numpy as np
- _scenes_names_prefix = '_scenes_names'
- _scenes_indices_prefix = '_scenes_indices'
- # store all variables from current module context
- context_vars = vars()
- def get_svd_data(data_type, block):
- """
- Method which returns the data type expected
- """
- if data_type == 'lab':
- block_file_path = '/tmp/lab_img.png'
- block.save(block_file_path)
- data = processing.get_LAB_L_SVD_s(Image.open(block_file_path))
- if data_type == 'mscn':
- img_mscn_revisited = processing.rgb_to_mscn(block)
- # save tmp as img
- img_output = Image.fromarray(img_mscn_revisited.astype('uint8'), 'L')
- mscn_revisited_file_path = '/tmp/mscn_revisited_img.png'
- img_output.save(mscn_revisited_file_path)
- img_block = Image.open(mscn_revisited_file_path)
- # extract from temp image
- data = metrics.get_SVD_s(img_block)
- """if data_type == 'mscn':
- img_gray = np.array(color.rgb2gray(np.asarray(block))*255, 'uint8')
- img_mscn = processing.calculate_mscn_coefficients(img_gray, 7)
- img_mscn_norm = processing.normalize_2D_arr(img_mscn)
- img_mscn_gray = np.array(img_mscn_norm*255, 'uint8')
- data = metrics.get_SVD_s(img_mscn_gray)
- """
- if data_type == 'low_bits_6':
- low_bits_6 = processing.rgb_to_LAB_L_low_bits(block, 6)
- data = metrics.get_SVD_s(low_bits_6)
- if data_type == 'low_bits_5':
- low_bits_5 = processing.rgb_to_LAB_L_low_bits(block, 5)
- data = metrics.get_SVD_s(low_bits_5)
- if data_type == 'low_bits_4':
- low_bits_4 = processing.rgb_to_LAB_L_low_bits(block, 4)
- data = metrics.get_SVD_s(low_bits_4)
- if data_type == 'low_bits_3':
- low_bits_3 = processing.rgb_to_LAB_L_low_bits(block, 3)
- data = metrics.get_SVD_s(low_bits_3)
- if data_type == 'low_bits_2':
- low_bits_2 = processing.rgb_to_LAB_L_low_bits(block, 2)
- data = metrics.get_SVD_s(low_bits_2)
- if data_type == 'low_bits_4_shifted_2':
- data = metrics.get_SVD_s(processing.rgb_to_LAB_L_bits(block, (3, 6)))
- if data_type == 'sub_blocks_stats':
- block = np.asarray(block)
- width, height, _= block.shape
- sub_width, sub_height = int(width / 4), int(height / 4)
- sub_blocks = processing.divide_in_blocks(block, (sub_width, sub_height))
- data = []
- for sub_b in sub_blocks:
- # by default use the whole lab L canal
- l_svd_data = np.array(processing.get_LAB_L_SVD_s(sub_b))
- # get information we want from svd
- data.append(np.mean(l_svd_data))
- data.append(np.median(l_svd_data))
- data.append(np.percentile(l_svd_data, 25))
- data.append(np.percentile(l_svd_data, 75))
- data.append(np.var(l_svd_data))
- area_under_curve = utils.integral_area_trapz(l_svd_data, dx=100)
- data.append(area_under_curve)
- # convert into numpy array after computing all stats
- data = np.asarray(data)
- if data_type == 'sub_blocks_stats_reduced':
- block = np.asarray(block)
- width, height, _= block.shape
- sub_width, sub_height = int(width / 4), int(height / 4)
- sub_blocks = processing.divide_in_blocks(block, (sub_width, sub_height))
- data = []
- for sub_b in sub_blocks:
- # by default use the whole lab L canal
- l_svd_data = np.array(processing.get_LAB_L_SVD_s(sub_b))
- # get information we want from svd
- data.append(np.mean(l_svd_data))
- data.append(np.median(l_svd_data))
- data.append(np.percentile(l_svd_data, 25))
- data.append(np.percentile(l_svd_data, 75))
- data.append(np.var(l_svd_data))
- # convert into numpy array after computing all stats
- data = np.asarray(data)
- if data_type == 'sub_blocks_area':
- block = np.asarray(block)
- width, height, _= block.shape
- sub_width, sub_height = int(width / 8), int(height / 8)
- sub_blocks = processing.divide_in_blocks(block, (sub_width, sub_height))
- data = []
- for sub_b in sub_blocks:
- # by default use the whole lab L canal
- l_svd_data = np.array(processing.get_LAB_L_SVD_s(sub_b))
- area_under_curve = utils.integral_area_trapz(l_svd_data, dx=50)
- data.append(area_under_curve)
- # convert into numpy array after computing all stats
- data = np.asarray(data)
- if data_type == 'sub_blocks_area_normed':
- block = np.asarray(block)
- width, height, _= block.shape
- sub_width, sub_height = int(width / 8), int(height / 8)
- sub_blocks = processing.divide_in_blocks(block, (sub_width, sub_height))
- data = []
- for sub_b in sub_blocks:
- # by default use the whole lab L canal
- l_svd_data = np.array(processing.get_LAB_L_SVD_s(sub_b))
- l_svd_data = utils.normalize_arr(l_svd_data)
- area_under_curve = utils.integral_area_trapz(l_svd_data, dx=50)
- data.append(area_under_curve)
- # convert into numpy array after computing all stats
- data = np.asarray(data)
- if data_type == 'mscn_var_4':
- data = _get_mscn_variance(block, (100, 100))
- if data_type == 'mscn_var_16':
- data = _get_mscn_variance(block, (50, 50))
- if data_type == 'mscn_var_64':
- data = _get_mscn_variance(block, (25, 25))
- if data_type == 'mscn_var_16_max':
- data = _get_mscn_variance(block, (50, 50))
- data = np.asarray(data)
- size = int(len(data) / 4)
- indices = data.argsort()[-size:][::-1]
- data = data[indices]
- if data_type == 'mscn_var_64_max':
- data = _get_mscn_variance(block, (25, 25))
- data = np.asarray(data)
- size = int(len(data) / 4)
- indices = data.argsort()[-size:][::-1]
- data = data[indices]
- if data_type == 'ica_diff':
- current_image = metrics.get_LAB_L(block)
- ica = FastICA(n_components=50)
- ica.fit(current_image)
- image_ica = ica.fit_transform(current_image)
- image_restored = ica.inverse_transform(image_ica)
- final_image = utils.normalize_2D_arr(image_restored)
- final_image = np.array(final_image * 255, 'uint8')
- sv_values = utils.normalize_arr(metrics.get_SVD_s(current_image))
- ica_sv_values = utils.normalize_arr(metrics.get_SVD_s(final_image))
- data = abs(np.array(sv_values) - np.array(ica_sv_values))
- if data_type == 'svd_trunc_diff':
- current_image = metrics.get_LAB_L(block)
- svd = TruncatedSVD(n_components=30, n_iter=100, random_state=42)
- transformed_image = svd.fit_transform(current_image)
- restored_image = svd.inverse_transform(transformed_image)
- reduced_image = (current_image - restored_image)
- U, s, V = metrics.get_SVD(reduced_image)
- data = s
- if data_type == 'ipca_diff':
- current_image = metrics.get_LAB_L(block)
- transformer = IncrementalPCA(n_components=20, batch_size=25)
- transformed_image = transformer.fit_transform(current_image)
- restored_image = transformer.inverse_transform(transformed_image)
- reduced_image = (current_image - restored_image)
- U, s, V = metrics.get_SVD(reduced_image)
- data = s
- if data_type == 'svd_reconstruct':
- reconstructed_interval = (90, 200)
- begin, end = reconstructed_interval
- lab_img = metrics.get_LAB_L(block)
- lab_img = np.array(lab_img, 'uint8')
- U, s, V = lin_svd(lab_img, full_matrices=True)
- smat = np.zeros((end-begin, end-begin), dtype=complex)
- smat[:, :] = np.diag(s[begin:end])
- output_img = np.dot(U[:, begin:end], np.dot(smat, V[begin:end, :]))
- output_img = np.array(output_img, 'uint8')
- data = metrics.get_SVD_s(output_img)
- return data
- def _get_mscn_variance(block, sub_block_size=(50, 50)):
- blocks = processing.divide_in_blocks(block, sub_block_size)
- data = []
- for block in blocks:
- mscn_coefficients = processing.get_mscn_coefficients(block)
- flat_coeff = mscn_coefficients.flatten()
- data.append(np.var(flat_coeff))
- return np.sort(data)
- def get_renderer_scenes_indices(renderer_name):
- if renderer_name not in renderer_choices:
- raise ValueError("Unknown renderer name")
- if renderer_name == 'all':
- return scenes_indices
- else:
- return context_vars[renderer_name + _scenes_indices_prefix]
- def get_renderer_scenes_names(renderer_name):
- if renderer_name not in renderer_choices:
- raise ValueError("Unknown renderer name")
- if renderer_name == 'all':
- return scenes_names
- else:
- return context_vars[renderer_name + _scenes_names_prefix]
|