123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- from ipfml import image_processing
- from PIL import Image
- import numpy as np
- from ipfml import metrics
- from skimage import color
- import cv2
- nb_bits = 3
- max_nb_bits = 8
- low_bits_svd_values = []
- def open_and_display(path, i):
- img = Image.open(path)
- block_used = np.array(img)
- low_bits_block = image_processing.rgb_to_LAB_L_bits(block_used, (i + 1, i + nb_bits + 1))
- low_bits_svd = metrics.get_SVD_s(low_bits_block)
- low_bits_svd = [b / low_bits_svd[0] for b in low_bits_svd]
- low_bits_svd_values[i].append(low_bits_svd)
- path_noisy = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_00050.png'
- path_threshold = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_00400.png'
- path_ref = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_01200.png'
- path_list = [path_noisy, path_threshold, path_ref]
- for i in range(0, max_nb_bits - nb_bits + 1):
- low_bits_svd_values.append([])
- for p in path_list:
- open_and_display(p, i)
- import matplotlib.pyplot as plt
- # SVD
- # make a little extra space between the subplots
- fig=plt.figure(figsize=(8, 8))
- for id, l in enumerate(low_bits_svd_values):
- fig.add_subplot(3, 3, (id + 1))
- plt.plot(l[0], label='Noisy')
- plt.plot(l[1], label='Threshold')
- plt.plot(l[2], label='Reference')
- plt.title('Low ' + str(nb_bits) + ' bits SVD shifted by ' + str(id))
- plt.ylabel('Low ' + str(nb_bits) + ' bits SVD values')
- plt.xlabel('Vector features')
- plt.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.ylim(0, 0.1)
- plt.show()
|