123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- from ipfml import image_processing
- from PIL import Image
- import numpy as np
- from ipfml import metrics
- from skimage import color
- import cv2
- low_bits_2_svd_values = []
- low_bits_3_svd_values = []
- low_bits_4_svd_values = []
- low_bits_5_svd_values = []
- low_bits_6_svd_values = []
- mscn_revisited_svd_values = []
- mscn_svd_values = []
- lab_svd_values = []
- def open_and_display(path):
- img = Image.open(path)
- block_used = np.array(img)
- img_mscn = image_processing.rgb_to_mscn(block_used)
- #img_mscn_norm = image_processing.normalize_2D_arr(img_mscn)
- #print(img_mscn)
- img_output = img_mscn.astype('uint8')
- print('-------------------------')
- # MSCN part computation
- mscn_s = metrics.get_SVD_s(img_output)
- mscn_s = [m / mscn_s[0] for m in mscn_s]
- mscn_revisited_svd_values.append(mscn_s)
- # LAB part computation
- path_block_img = '/tmp/lab_img.png'
- img_used_pil = Image.fromarray(block_used.astype('uint8'), 'RGB')
- img_used_pil.save(path_block_img)
- lab_s = image_processing.get_LAB_L_SVD_s(Image.open(path_block_img))
- lab_s = [l / lab_s[0] for l in lab_s]
- lab_svd_values.append(lab_s)
- # computation of low bits parts 2 bits
- low_bits_block = image_processing.rgb_to_LAB_L_low_bits(block_used, 3)
- low_bits_svd = metrics.get_SVD_s(low_bits_block)
- low_bits_svd = [b / low_bits_svd[0] for b in low_bits_svd]
- low_bits_2_svd_values.append(low_bits_svd)
- # computation of low bits parts 3 bits
- low_bits_block = image_processing.rgb_to_LAB_L_low_bits(block_used, 7)
- low_bits_svd = metrics.get_SVD_s(low_bits_block)
- low_bits_svd = [b / low_bits_svd[0] for b in low_bits_svd]
- low_bits_3_svd_values.append(low_bits_svd)
- # computation of low bits parts 4 bits
- low_bits_block = image_processing.rgb_to_LAB_L_low_bits(block_used)
- low_bits_svd = metrics.get_SVD_s(low_bits_block)
- low_bits_svd = [b / low_bits_svd[0] for b in low_bits_svd]
- low_bits_4_svd_values.append(low_bits_svd)
- # computation of low bits parts 5 bits
- low_bits_block = image_processing.rgb_to_LAB_L_low_bits(block_used, 31)
- low_bits_svd = metrics.get_SVD_s(low_bits_block)
- low_bits_svd = [b / low_bits_svd[0] for b in low_bits_svd]
- low_bits_5_svd_values.append(low_bits_svd)
- # computation of low bits parts 6 bits
- low_bits_block = image_processing.rgb_to_LAB_L_low_bits(block_used, 63)
- low_bits_svd = metrics.get_SVD_s(low_bits_block)
- low_bits_svd = [b / low_bits_svd[0] for b in low_bits_svd]
- low_bits_6_svd_values.append(low_bits_svd)
- # Other MSCN
- img_grey = np.array(color.rgb2gray(np.asarray(block_used))*255, 'uint8')
- img_mscn_in_grey = np.array(image_processing.normalize_2D_arr(image_processing.calculate_mscn_coefficients(img_grey, 7))*255, 'uint8')
- svd_s_values = metrics.get_SVD_s(img_mscn_in_grey)
- svd_s_values = [s / svd_s_values[0] for s in svd_s_values]
- mscn_svd_values.append(svd_s_values)
- #path_noisy = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Appart1opt02/appartAopt_00020.png'
- #path_threshold = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Appart1opt02/appartAopt_00300.png'
- #path_ref = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Appart1opt02/appartAopt_00900.png'
- path_noisy = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_00050.png'
- path_threshold = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_00400.png'
- path_ref = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_01200.png'
- path_list = [path_noisy, path_threshold, path_ref]
- for p in path_list:
- open_and_display(p)
- import matplotlib.pyplot as plt
- # SVD
- # make a little extra space between the subplots
- plt.plot(lab_svd_values[0], label='Noisy')
- plt.plot(lab_svd_values[1], label='Threshold')
- plt.plot(lab_svd_values[2], label='Reference')
- plt.ylabel('LAB SVD')
- plt.xlabel('Vector features')
- plt.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.ylim(0, 0.1)
- plt.show()
- plt.plot(mscn_svd_values[0], label='Noisy')
- plt.plot(mscn_svd_values[1], label='Threshold')
- plt.plot(mscn_svd_values[2], label='Reference')
- plt.ylabel('MSCN SVD')
- plt.xlabel('Vector features')
- plt.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.ylim(0, 0.1)
- plt.show()
- plt.plot(mscn_revisited_svd_values[0], label='Noisy')
- plt.plot(mscn_revisited_svd_values[1], label='Threshold')
- plt.plot(mscn_revisited_svd_values[2], label='Reference')
- plt.ylabel('Revisited MSCN SVD')
- plt.xlabel('Vector features')
- plt.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.ylim(0, 0.1)
- plt.show()
- plt.plot(low_bits_2_svd_values[0], label='Noisy')
- plt.plot(low_bits_2_svd_values[1], label='Threshold')
- plt.plot(low_bits_2_svd_values[2], label='Reference')
- plt.ylabel('Low 2 bits SVD')
- plt.xlabel('Vector features')
- plt.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.ylim(0, 0.1)
- plt.show()
- plt.plot(low_bits_3_svd_values[0], label='Noisy')
- plt.plot(low_bits_3_svd_values[1], label='Threshold')
- plt.plot(low_bits_3_svd_values[2], label='Reference')
- plt.ylabel('Low 3 bits SVD')
- plt.xlabel('Vector features')
- plt.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.ylim(0, 0.1)
- plt.show()
- plt.plot(low_bits_4_svd_values[0], label='Noisy')
- plt.plot(low_bits_4_svd_values[1], label='Threshold')
- plt.plot(low_bits_4_svd_values[2], label='Reference')
- plt.ylabel('Low 4 bits SVD')
- plt.xlabel('Vector features')
- plt.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.ylim(0, 0.1)
- plt.show()
- plt.plot(low_bits_5_svd_values[0], label='Noisy')
- plt.plot(low_bits_5_svd_values[1], label='Threshold')
- plt.plot(low_bits_5_svd_values[2], label='Reference')
- plt.ylabel('Low 5 bits SVD')
- plt.xlabel('Vector features')
- plt.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.ylim(0, 0.1)
- plt.show()
- plt.plot(low_bits_6_svd_values[0], label='Noisy')
- plt.plot(low_bits_6_svd_values[1], label='Threshold')
- plt.plot(low_bits_6_svd_values[2], label='Reference')
- plt.ylabel('Low 6 bits SVD')
- plt.xlabel('Vector features')
- plt.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.ylim(0, 0.1)
- plt.show()
|