123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241 |
- from ipfml import image_processing
- from PIL import Image
- import numpy as np
- from ipfml import metrics
- from skimage import color
- import cv2
- low_bits_svd_values_norm = []
- low_bits_svd_values_norm_together = []
- low_bits_svd_values = []
- mscn_svd_values_norm = []
- mscn_svd_values_norm_together = []
- mscn_svd_values = []
- lab_svd_values_norm = []
- lab_svd_values_norm_together = []
- lab_svd_values = []
- def open_and_display(path):
- img = Image.open(path)
- blocks = image_processing.divide_in_blocks(img, (200, 200), False)
- block_used = blocks[11]
- img_mscn = image_processing.rgb_to_mscn(block_used)
- #img_mscn_norm = image_processing.normalize_2D_arr(img_mscn)
- #print(img_mscn)
- img_output = img_mscn.astype('uint8')
- print('-------------------------')
- # MSCN part computation
- mscn_s = metrics.get_SVD_s(img_output)
- mscn_svd_values.append(mscn_s)
- mscn_svd_values_norm.append(image_processing.normalize_arr(mscn_s))
- mscn_min_val = 10000000
- mscn_max_val = 0
- # check for each block of image
- for block in blocks:
- current_img_mscn = image_processing.rgb_to_mscn(block)
- current_img_output = img_mscn.astype('uint8')
- # MSCN part computation
- current_mscn_s = metrics.get_SVD_s(img_output)
- current_min = current_mscn_s.min()
- current_max = current_mscn_s.max()
- if current_min < mscn_min_val:
- mscn_min_val = current_min
- if current_max > mscn_max_val:
- mscn_max_val = current_max
- mscn_svd_values_norm_together.append(image_processing.normalize_arr_with_range(mscn_s, mscn_min_val, mscn_max_val))
- # LAB part computation
- path_block_img = '/tmp/lab_img.png'
- img_used_pil = Image.fromarray(block_used.astype('uint8'), 'RGB')
- img_used_pil.save(path_block_img)
- #img_used_pil.show()
- lab_s = image_processing.get_LAB_L_SVD_s(Image.open(path_block_img))
- lab_svd_values.append(lab_s)
- lab_svd_values_norm.append(image_processing.normalize_arr(lab_s))
- lab_min_val = 10000000
- lab_max_val = 0
- # check for each block of image
- for block in blocks:
- current_img_used_pil = Image.fromarray(block.astype('uint8'), 'RGB')
- current_img_used_pil.save(path_block_img)
- current_lab_s = image_processing.get_LAB_L_SVD_s(Image.open(path_block_img))
- current_min = current_lab_s.min()
- current_max = current_lab_s.max()
- if current_min < lab_min_val:
- lab_min_val = current_min
- if current_max > lab_max_val:
- lab_max_val = current_max
- lab_svd_values_norm_together.append(image_processing.normalize_arr_with_range(lab_s, lab_min_val, lab_max_val))
- # computation of low bits parts
- low_bits_block = image_processing.rgb_to_grey_low_bits(block_used)
- low_bits_svd = metrics.get_SVD_s(low_bits_block)
- low_bits_svd_values.append(low_bits_svd)
- low_bits_svd_values_norm.append(image_processing.normalize_arr(low_bits_svd))
- low_bits_min_val = 10000000
- low_bits_max_val = 0
- # check for each block of image
- for block in blocks:
- current_grey_block = np.array(color.rgb2gray(block)*255, 'uint8')
- current_low_bit_block = current_grey_block & 15
- current_low_bits_svd = metrics.get_SVD_s(current_low_bit_block)
- current_min = current_low_bits_svd.min()
- current_max = current_low_bits_svd.max()
- if current_min < low_bits_min_val:
- low_bits_min_val = current_min
- if current_max > low_bits_max_val:
- low_bits_max_val = current_max
- low_bits_svd_values_norm_together.append(image_processing.normalize_arr_with_range(low_bits_svd, low_bits_min_val, low_bits_max_val))
- # Other MSCN
- img_grey = np.array(color.rgb2gray(np.asarray(block_used))*255, 'uint8')
- img_mscn_in_grey = np.array(image_processing.normalize_2D_arr(image_processing.calculate_mscn_coefficients(img_grey, 7))*255, 'uint8')
- svd_s_values = metrics.get_SVD_s(img_mscn_in_grey)
- #print(svd_s_values[0:10])
- img_mscn_pil = Image.fromarray(img_mscn_in_grey.astype('uint8'), 'L')
- #img_mscn_pil.show()
- #path_noisy = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Appart1opt02/appartAopt_00020.png'
- #path_threshold = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Appart1opt02/appartAopt_00300.png'
- #path_ref = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Appart1opt02/appartAopt_00900.png'
- path_noisy = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_00050.png'
- path_threshold = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_00400.png'
- path_ref = '/home/jbuisine/Documents/Thesis/Development/NoiseDetection_In_SynthesisImages/fichiersSVD_light/Cuisine01/cuisine01_01200.png'
- path_list = [path_noisy, path_threshold, path_ref]
- for p in path_list:
- open_and_display(p)
- import matplotlib.pyplot as plt
- # SVD
- fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
- # make a little extra space between the subplots
- fig.subplots_adjust(hspace=0.5)
- ax1.plot(lab_svd_values[0], label='Noisy')
- ax1.plot(lab_svd_values[1], label='Threshold')
- ax1.plot(lab_svd_values[2], label='Reference')
- ax1.set_ylabel('LAB SVD comparisons')
- ax1.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- ax2.plot(mscn_svd_values[0], label='Noisy')
- ax2.plot(mscn_svd_values[1], label='Threshold')
- ax2.plot(mscn_svd_values[2], label='Reference')
- ax2.set_ylabel('MSCN SVD comparisons')
- ax2.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- ax3.plot(low_bits_svd_values[0], label='Noisy')
- ax3.plot(low_bits_svd_values[1], label='Threshold')
- ax3.plot(low_bits_svd_values[2], label='Reference')
- ax3.set_ylabel('Low bits SVD comparisons')
- ax3.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.show()
- # SVDN
- fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
- # make a little extra space between the subplots
- fig.subplots_adjust(hspace=0.5)
- ax1.plot(lab_svd_values_norm[0], label='Noisy')
- ax1.plot(lab_svd_values_norm[1], label='Threshold')
- ax1.plot(lab_svd_values_norm[2], label='Reference')
- ax1.set_ylabel('LAB SVDN comparisons')
- ax1.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- ax2.plot(mscn_svd_values_norm[0], label='Noisy')
- ax2.plot(mscn_svd_values_norm[1], label='Threshold')
- ax2.plot(mscn_svd_values_norm[2], label='Reference')
- ax2.set_ylabel('MSCN SVDN comparisons')
- ax2.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- ax3.plot(low_bits_svd_values_norm[0], label='Noisy')
- ax3.plot(low_bits_svd_values_norm[1], label='Threshold')
- ax3.plot(low_bits_svd_values_norm[2], label='Reference')
- ax3.set_ylabel('Low bits SVD comparisons')
- ax3.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.show()
- # SVDNE
- fig, (ax1, ax2, ax3) = plt.subplots(3, 1)
- # make a little extra space between the subplots
- fig.subplots_adjust(hspace=0.5)
- ax1.plot(lab_svd_values_norm_together[0], label='Noisy')
- ax1.plot(lab_svd_values_norm_together[1], label='Threshold')
- ax1.plot(lab_svd_values_norm_together[2], label='Reference')
- ax1.set_ylabel('LAB SVDNE comparisons')
- ax1.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- ax2.plot(mscn_svd_values_norm_together[0], label='Noisy')
- ax2.plot(mscn_svd_values_norm_together[1], label='Threshold')
- ax2.plot(mscn_svd_values_norm_together[2], label='Reference')
- ax2.set_ylabel('MSCN SVDNE comparisons')
- ax2.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- ax3.plot(low_bits_svd_values_norm_together[0], label='Noisy')
- ax3.plot(low_bits_svd_values_norm_together[1], label='Threshold')
- ax3.plot(low_bits_svd_values_norm_together[2], label='Reference')
- ax3.set_ylabel('Low bits SVD comparisons')
- ax3.legend(bbox_to_anchor=(0.7, 1), loc=2, borderaxespad=0.2)
- plt.show()
- #print(mscn_svd_values[0][0:3])
- #print(mscn_svd_values[1][0:3])
- #print(mscn_svd_values[2][0:3])
|