123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Fri Sep 14 21:02:42 2018
- @author: jbuisine
- """
- from __future__ import print_function
- import sys, os, getopt
- import numpy as np
- import random
- import time
- import json
- from PIL import Image
- from ipfml import image_processing
- from ipfml import metrics
- config_filename = "config"
- zone_folder = "zone"
- min_max_filename = "_min_max_values"
- generic_output_file_svd = '_random.csv'
- output_data_folder = 'data'
- # define all scenes values, here only use Maxwell scenes
- scenes_list = ['Appart1opt02', 'Cuisine01', 'SdbCentre', 'SdbDroite']
- scenes_indexes = ['A', 'D', 'G', 'H']
- choices = ['svd', 'svdn', 'svdne']
- path = './fichiersSVD_light'
- zones = np.arange(16)
- seuil_expe_filename = 'seuilExpe'
- min_value_interval = sys.maxsize
- max_value_interval = 0
- def construct_new_line(path_seuil, interval, line, norm, sep, index):
- begin, end = interval
- line_data = line.split(';')
- seuil = line_data[0]
- metrics = line_data[begin+1:end+1]
- metrics = [float(m) for m in metrics]
- if norm:
- metrics = image_processing.normalize_arr_with_range(metrics, min_value_interval, max_value_interval)
- with open(path_seuil, "r") as seuil_file:
- seuil_learned = int(seuil_file.readline().strip())
- if seuil_learned > int(seuil):
- line = '1'
- else:
- line = '0'
- for idx, val in enumerate(metrics):
- if index:
- line += " " + str(idx + 1)
- line += sep
- line += str(val)
- line += '\n'
- return line
- def get_min_max_value_interval(_filename, _interval, _choice, _metric, _scenes = scenes_list, _nb_zones = 4, _percent = 1):
- global min_value_interval, max_value_interval
- scenes = os.listdir(path)
- # remove min max file from scenes folder
- scenes = [s for s in scenes if min_max_filename not in s]
- for id_scene, folder_scene in enumerate(scenes):
- # only take care of maxwell scenes
- if folder_scene in scenes_list:
- scene_path = os.path.join(path, folder_scene)
- zones_folder = []
- # create zones list
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- zones_folder.append("zone"+index_str)
- # shuffle list of zones (=> randomly choose zones)
- random.shuffle(zones_folder)
- for id_zone, zone_folder in enumerate(zones_folder):
- zone_path = os.path.join(scene_path, zone_folder)
- data_filename = _metric + "_" + _choice + generic_output_file_svd
- data_file_path = os.path.join(zone_path, data_filename)
- # getting number of line and read randomly lines
- f = open(data_file_path)
- lines = f.readlines()
- counter = 0
- # check if user select current scene and zone to be part of training data set
- for line in lines:
- begin, end = _interval
- line_data = line.split(';')
- metrics = line_data[begin+1:end+1]
- metrics = [float(m) for m in metrics]
- min_value = min(metrics)
- max_value = max(metrics)
- if min_value < min_value_interval:
- min_value_interval = min_value
- if max_value > max_value_interval:
- max_value_interval = max_value
- counter += 1
- def generate_data_model(_filename, _interval, _choice, _metric, _scenes = scenes_list, _nb_zones = 4, _percent = 1, _norm = False, _sep=':', _index=True):
- output_train_filename = _filename + ".train"
- output_test_filename = _filename + ".test"
- if not '/' in output_train_filename:
- raise Exception("Please select filename with directory path to save data. Example : data/dataset")
- # create path if not exists
- if not os.path.exists(output_data_folder):
- os.makedirs(output_data_folder)
- train_file = open(output_train_filename, 'w')
- test_file = open(output_test_filename, 'w')
- scenes = os.listdir(path)
- # remove min max file from scenes folder
- scenes = [s for s in scenes if min_max_filename not in s]
- for id_scene, folder_scene in enumerate(scenes):
- # only take care of maxwell scenes
- if folder_scene in scenes_list:
- scene_path = os.path.join(path, folder_scene)
- zones_folder = []
- # create zones list
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- zones_folder.append("zone"+index_str)
- # shuffle list of zones (=> randomly choose zones)
- random.shuffle(zones_folder)
- for id_zone, zone_folder in enumerate(zones_folder):
- zone_path = os.path.join(scene_path, zone_folder)
- data_filename = _metric + "_" + _choice + generic_output_file_svd
- data_file_path = os.path.join(zone_path, data_filename)
- # getting number of line and read randomly lines
- f = open(data_file_path)
- lines = f.readlines()
- num_lines = len(lines)
- lines_indexes = np.arange(num_lines)
- random.shuffle(lines_indexes)
- path_seuil = os.path.join(zone_path, seuil_expe_filename)
- counter = 0
- # check if user select current scene and zone to be part of training data set
- for index in lines_indexes:
- line = construct_new_line(path_seuil, _interval, lines[index], _norm, _sep, _index)
- percent = counter / num_lines
- if id_zone < _nb_zones and folder_scene in _scenes and percent <= _percent:
- train_file.write(line)
- else:
- test_file.write(line)
- counter += 1
- f.close()
- train_file.close()
- test_file.close()
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python generate_data_model_random.py --output xxxx --interval 0,20 --kind svdne --metric lab --scenes "A, B, D" --nb_zones 5 --percent 0.7 --norm 1 --sep : --rowindex 1')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "ho:i:k:s:n:p:r", ["help=", "output=", "interval=", "kind=", "metric=","scenes=", "nb_zones=", "percent=", "norm=", "sep=", "rowindex="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python generate_data_model_random.py --output xxxx --interval 0,20 --kind svdne --metric lab --scenes "A, B, D" --nb_zones 5 --percent 0.7 --norm 1 --sep : --rowindex 1')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python generate_data_model_random.py --output xxxx --interval 0,20 --kind svdne --metric lab --scenes "A, B, D" --nb_zones 5 --percent 0.7 --norm 1 --sep : --rowindex 1')
- sys.exit()
- elif o in ("-o", "--output"):
- p_filename = a
- elif o in ("-i", "--interval"):
- p_interval = list(map(int, a.split(',')))
- elif o in ("-k", "--kind"):
- p_kind = a
- elif o in ("-m", "--metric"):
- p_metric = a
- elif o in ("-s", "--scenes"):
- p_scenes = a.split(',')
- elif o in ("-n", "--nb_zones"):
- p_nb_zones = int(a)
- elif o in ("-n", "--norm"):
- if int(a) == 1:
- p_norm = True
- else:
- p_norm = False
- elif o in ("-p", "--percent"):
- p_percent = float(a)
- elif o in ("-s", "--sep"):
- p_sep = a
- elif o in ("-r", "--rowindex"):
- if int(a) == 1:
- p_rowindex = True
- else:
- p_rowindex = False
- else:
- assert False, "unhandled option"
- # getting scenes from indexes user selection
- scenes_selected = []
- for scene_id in p_scenes:
- index = scenes_indexes.index(scene_id.strip())
- scenes_selected.append(scenes_list[index])
- # find min max value if necessary to renormalize data
- if p_norm:
- get_min_max_value_interval(p_filename, p_interval, p_kind, p_metric, scenes_selected, p_nb_zones, p_percent)
- # create database using img folder (generate first time only)
- generate_data_model(p_filename, p_interval, p_kind, p_metric, scenes_selected, p_nb_zones, p_percent, p_norm, p_sep, p_rowindex)
- if __name__== "__main__":
- main()
|