123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- """
- Created on Fri Sep 14 21:02:42 2018
- @author: jbuisine
- """
- from __future__ import print_function
- import sys, os, getopt
- import numpy as np
- import random
- import time
- import json
- from PIL import Image
- from ipfml import image_processing
- from ipfml import metrics
- from skimage import color
- import matplotlib.pyplot as plt
- config_filename = "config"
- zone_folder = "zone"
- min_max_filename = "_min_max_values"
- # define all scenes values
- scenes_list = ['Appart1opt02', 'Bureau1', 'Cendrier', 'Cuisine01', 'EchecsBas', 'PNDVuePlongeante', 'SdbCentre', 'SdbDroite', 'Selles']
- scenes_indexes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
- choices = ['svd', 'svdn', 'svdne']
- path = '../fichiersSVD_light'
- zones = np.arange(16)
- seuil_expe_filename = 'seuilExpe'
- metric_choices = ['lab', 'mscn', 'mscn_revisited', 'low_bits_2', 'low_bits_3', 'low_bits_4', 'low_bits_5', 'low_bits_6', 'low_bits_4_shifted_2']
- def display_data_scenes(data_type, p_scene, p_kind):
- """
- @brief Method which generates all .csv files from scenes photos
- @param path - path of scenes folder information
- @return nothing
- """
- scenes = os.listdir(path)
- # remove min max file from scenes folder
- scenes = [s for s in scenes if min_max_filename not in s]
- # go ahead each scenes
- for id_scene, folder_scene in enumerate(scenes):
- if p_scene == folder_scene:
- print(folder_scene)
- scene_path = os.path.join(path, folder_scene)
- config_file_path = os.path.join(scene_path, config_filename)
- with open(config_file_path, "r") as config_file:
- last_image_name = config_file.readline().strip()
- prefix_image_name = config_file.readline().strip()
- start_index_image = config_file.readline().strip()
- end_index_image = config_file.readline().strip()
- step_counter = int(config_file.readline().strip())
- # construct each zones folder name
- zones_folder = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- current_zone = "zone"+index_str
- zones_folder.append(current_zone)
- zones_images_data = []
- threshold_info = []
- for id_zone, zone_folder in enumerate(zones_folder):
- zone_path = os.path.join(scene_path, zone_folder)
- current_counter_index = int(start_index_image)
- end_counter_index = int(end_index_image)
- # get threshold information
- path_seuil = os.path.join(zone_path, seuil_expe_filename)
- # open treshold path and get this information
- with open(path_seuil, "r") as seuil_file:
- seuil_learned = int(seuil_file.readline().strip())
- threshold_image_found = False
- while(current_counter_index <= end_counter_index and not threshold_image_found):
- if seuil_learned < int(current_counter_index):
- current_counter_index_str = str(current_counter_index)
- while len(start_index_image) > len(current_counter_index_str):
- current_counter_index_str = "0" + current_counter_index_str
- threshold_image_found = True
- threshold_image_zone = current_counter_index_str
- threshold_info.append(threshold_image_zone)
- current_counter_index += step_counter
- # all indexes of picture to plot
- images_indexes = [start_index_image, threshold_image_zone, end_index_image]
- images_data = []
- print(images_indexes)
- for index in images_indexes:
- img_path = os.path.join(scene_path, prefix_image_name + index + ".png")
- current_img = Image.open(img_path)
- img_blocks = image_processing.divide_in_blocks(current_img, (200, 200))
- # getting expected block id
- block = img_blocks[id_zone]
- # get data from mode
- # Here you can add the way you compute data
- if data_type == 'lab':
- block_file_path = '/tmp/lab_img.png'
- block.save(block_file_path)
- data = image_processing.get_LAB_L_SVD_s(Image.open(block_file_path))
- if data_type == 'mscn_revisited':
- img_mscn_revisited = image_processing.rgb_to_mscn(block)
- # save tmp as img
- img_output = Image.fromarray(img_mscn_revisited.astype('uint8'), 'L')
- mscn_revisited_file_path = '/tmp/mscn_revisited_img.png'
- img_output.save(mscn_revisited_file_path)
- img_block = Image.open(mscn_revisited_file_path)
- # extract from temp image
- data = metrics.get_SVD_s(img_block)
- if data_type == 'mscn':
- img_gray = np.array(color.rgb2gray(np.asarray(block))*255, 'uint8')
- img_mscn = image_processing.calculate_mscn_coefficients(img_gray, 7)
- img_mscn_norm = image_processing.normalize_2D_arr(img_mscn)
- img_mscn_gray = np.array(img_mscn_norm*255, 'uint8')
- data = metrics.get_SVD_s(img_mscn_gray)
- if data_type == 'low_bits_6':
- low_bits_6 = image_processing.rgb_to_LAB_L_low_bits(block, 63)
- # extract from temp image
- data = metrics.get_SVD_s(low_bits_6)
- if data_type == 'low_bits_5':
- low_bits_5 = image_processing.rgb_to_LAB_L_low_bits(block, 31)
- # extract from temp image
- data = metrics.get_SVD_s(low_bits_5)
- if data_type == 'low_bits_4':
- low_bits_4 = image_processing.rgb_to_LAB_L_low_bits(block)
- # extract from temp image
- data = metrics.get_SVD_s(low_bits_4)
- if data_type == 'low_bits_3':
- low_bits_3 = image_processing.rgb_to_LAB_L_low_bits(block, 7)
- # extract from temp image
- data = metrics.get_SVD_s(low_bits_3)
- if data_type == 'low_bits_2':
- low_bits_2 = image_processing.rgb_to_LAB_L_low_bits(block, 3)
- # extract from temp image
- data = metrics.get_SVD_s(low_bits_2)
- ##################
- # Data mode part #
- ##################
- # modify data depending mode
- if p_kind == 'svdn':
- data = image_processing.normalize_arr(data)
- if p_kind == 'svdne':
- path_min_max = os.path.join(path, data_type + min_max_filename)
- with open(path_min_max, 'r') as f:
- min_val = float(f.readline())
- max_val = float(f.readline())
- data = image_processing.normalize_arr_with_range(data, min_val, max_val)
- # append of data
- images_data.append(data)
- zones_images_data.append(images_data)
- fig=plt.figure(figsize=(8, 8))
- fig.suptitle(data_type + " values for " + p_scene + " scene (normalization : " + p_kind + ")", fontsize=20)
- for id, data in enumerate(zones_images_data):
- fig.add_subplot(4, 4, (id + 1))
- plt.plot(data[0], label='Noisy_' + start_index_image)
- plt.plot(data[1], label='Threshold_' + threshold_info[id])
- plt.plot(data[2], label='Reference_' + end_index_image)
- plt.ylabel(data_type + ' SVD, ZONE_' + str(id + 1), fontsize=18)
- plt.xlabel('Vector features', fontsize=18)
- plt.legend(bbox_to_anchor=(0.5, 1), loc=2, borderaxespad=0.2, fontsize=18)
- plt.ylim(0, 0.1)
- plt.show()
- def main():
- if len(sys.argv) <= 1:
- print('Run with default parameters...')
- print('python generate_all_data.py --metric all --scene A --kind svdn')
- sys.exit(2)
- try:
- opts, args = getopt.getopt(sys.argv[1:], "hm:s:k", ["help=", "metric=", "scene=", "kind="])
- except getopt.GetoptError:
- # print help information and exit:
- print('python generate_all_data.py --metric all --scene A --kind svdn')
- sys.exit(2)
- for o, a in opts:
- if o == "-h":
- print('python generate_all_data.py --metric all --scene A --kind svdn')
- sys.exit()
- elif o in ("-m", "--metric"):
- p_metric = a
- if p_metric != 'all' and p_metric not in metric_choices:
- assert False, "Invalid metric choice"
- elif o in ("-s", "--scene"):
- p_scene = a
- if p_scene not in scenes_indexes:
- assert False, "Invalid metric choice"
- else:
- p_scene = scenes_list[scenes_indexes.index(p_scene)]
- elif o in ("-k", "--kind"):
- p_kind = a
- if p_kind not in choices:
- assert False, "Invalid metric choice"
- else:
- assert False, "unhandled option"
- display_data_scenes(p_metric, p_scene, p_kind)
- if __name__== "__main__":
- main()
|