123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- from keras.preprocessing.image import ImageDataGenerator
- from keras.models import Sequential
- from keras.layers import Conv1D, MaxPooling1D
- from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization
- from keras.wrappers.scikit_learn import KerasClassifier
- from keras import backend as K
- import matplotlib.pyplot as plt
- from sklearn.utils import shuffle
- from sklearn.metrics import roc_auc_score
- import numpy as np
- import pandas as pd
- from ipfml import processing
- import modules.utils.config as cfg
- from PIL import Image
- import sys, os
- import argparse
- import json
- import subprocess
- import time
- def f1(y_true, y_pred):
- def recall(y_true, y_pred):
- """Recall metric.
- Only computes a batch-wise average of recall.
- Computes the recall, a metric for multi-label classification of
- how many relevant items are selected.
- """
- true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
- possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
- recall = true_positives / (possible_positives + K.epsilon())
- return recall
- def precision(y_true, y_pred):
- """Precision metric.
- Only computes a batch-wise average of precision.
- Computes the precision, a metric for multi-label classification of
- how many selected items are relevant.
- """
- true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
- predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
- precision = true_positives / (predicted_positives + K.epsilon())
- return precision
- precision = precision(y_true, y_pred)
- recall = recall(y_true, y_pred)
- return 2*((precision*recall)/(precision+recall+K.epsilon()))
- def generate_model(input_shape):
- model = Sequential()
- #model.add(Conv1D(128, (10), input_shape=input_shape))
- #model.add(Activation('relu'))
- #model.add(Conv1D(128, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(128, (10)))
- #model.add(Activation('relu'))
- #model.add(MaxPooling1D(pool_size=(2)))
- #model.add(Conv1D(64, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(64, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(64, (10)))
- #model.add(Activation('relu'))
- #model.add(MaxPooling1D(pool_size=(2)))
- #model.add(Conv1D(32, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(32, (10)))
- #model.add(Activation('relu'))
- #model.add(Conv1D(32, (10)))
- #model.add(Activation('relu'))
- #model.add(MaxPooling1D(pool_size=(2)))
- model.add(Flatten(input_shape=input_shape))
- model.add(Dense(2048))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.2))
- model.add(Dense(1024))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.2))
- model.add(Dense(512))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.3))
- model.add(Dense(256))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.3))
- model.add(Dense(128))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.3))
- model.add(Dense(20))
- model.add(Activation('relu'))
- model.add(BatchNormalization())
- model.add(Dropout(0.3))
- model.add(Dense(1))
- model.add(Activation('sigmoid'))
- model.compile(loss='binary_crossentropy',
- optimizer='adam',
- metrics=['accuracy', f1])
- return model
- def main():
- parser = argparse.ArgumentParser(description="Process deep_network_keras_svd.py parameters")
- parser.add_argument('--data', type=str, help='Data filename prefix to access train and test dataset')
- parser.add_argument('--output', type=str, help='Name of filename to save model into')
- parser.add_argument('--size', type=int, help='Size of input data vector')
- args = parser.parse_args()
- p_datafile = args.data
- p_output_filename = args.output
- p_vector_size = args.size
- epochs = 10
- batch_size = cfg.keras_batch
- input_shape = (p_vector_size, 1)
- ###########################
- # 1. Get and prepare data
- ###########################
- dataset_train = pd.read_csv(p_datafile + '.train', header=None, sep=";")
- dataset_test = pd.read_csv(p_datafile + '.test', header=None, sep=";")
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_test = shuffle(dataset_test)
- # get dataset with equal number of classes occurences
- noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 1]
- not_noisy_df_train = dataset_train[dataset_train.ix[:, 0] == 0]
- nb_noisy_train = len(noisy_df_train.index)
- noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 1]
- not_noisy_df_test = dataset_test[dataset_test.ix[:, 0] == 0]
- nb_noisy_test = len(noisy_df_test.index)
- final_df_train = pd.concat([not_noisy_df_train[0:nb_noisy_train], noisy_df_train])
- final_df_test = pd.concat([not_noisy_df_test[0:nb_noisy_test], noisy_df_test])
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_test = shuffle(final_df_test)
- final_df_train_size = len(final_df_train.index)
- final_df_test_size = len(final_df_test.index)
- # use of the whole data set for training
- x_dataset_train = final_df_train.ix[:,1:]
- x_dataset_test = final_df_test.ix[:,1:]
- y_dataset_train = final_df_train.ix[:,0]
- y_dataset_test = final_df_test.ix[:,0]
- #######################
- # 2. Getting model
- #######################
- model = generate_model(input_shape)
- model.summary()
- #model = KerasClassifier(build_fn=model, epochs=cfg.keras_epochs, batch_size=cfg.keras_batch, verbose=0)
- #######################
- # 3. Fit model : use of cross validation to fit model
- #######################
- # reshape input data
- x_dataset_train = np.array(x_dataset_train).reshape(len(x_dataset_train), p_vector_size, 1)
- x_dataset_test = np.array(x_dataset_test).reshape(len(x_dataset_test), p_vector_size, 1)
- model.fit(x_dataset_train, y_dataset_train, validation_split=0.20, epochs=cfg.keras_epochs, batch_size=cfg.keras_batch)
- score = model.evaluate(x_dataset_test, y_dataset_test, batch_size=batch_size)
- if not os.path.exists(cfg.saved_models_folder):
- os.makedirs(cfg.saved_models_folder)
- # save the model into HDF5 file
- model_output_path = os.path.join(cfg.saved_models_folder, p_output_filename + '.json')
- json_model_content = model.to_json()
- with open(model_output_path, 'w') as f:
- print("Model saved into ", model_output_path)
- json.dump(json_model_content, f, indent=4)
- model.save_weights(model_output_path.replace('.json', '.h5'))
- # Save results obtained from model
- y_test_prediction = model.predict(x_dataset_test)
- print("Metrics : ", model.metrics_names)
- print("Prediction : ", score)
- print("ROC AUC : ", roc_auc_score(y_dataset_test, y_test_prediction))
- if __name__== "__main__":
- main()
|