<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>macop.algorithms.mono.HillClimberFirstImprovment &mdash; macop v1.0.5 documentation</title>
  

  
  
  
  

  
  <script type="text/javascript" src="../../../../_static/js/modernizr.min.js"></script>
  
    
      <script type="text/javascript" id="documentation_options" data-url_root="../../../../" src="../../../../_static/documentation_options.js"></script>
        <script type="text/javascript" src="../../../../_static/jquery.js"></script>
        <script type="text/javascript" src="../../../../_static/underscore.js"></script>
        <script type="text/javascript" src="../../../../_static/doctools.js"></script>
        <script type="text/javascript" src="../../../../_static/language_data.js"></script>
    
    <script type="text/javascript" src="../../../../_static/js/theme.js"></script>

    

  
  <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
    <link rel="index" title="Index" href="../../../../genindex.html" />
    <link rel="search" title="Search" href="../../../../search.html" /> 
</head>

<body class="wy-body-for-nav">

   
  <div class="wy-grid-for-nav">
    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search" >
          

          
            <a href="../../../../index.html" class="icon icon-home"> macop
          

          
          </a>

          
            
            
              <div class="version">
                1.0.5
              </div>
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <p class="caption"><span class="caption-text">Contents:</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../../description.html">Description</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../macop.html">Documentation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../examples.html">Some examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../../contributing.html">Contributing</a></li>
</ul>

            
          
        </div>
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="../../../../index.html">macop</a>
        
      </nav>


      <div class="wy-nav-content">
        
        <div class="rst-content">
        
          















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="../../../../index.html">Docs</a> &raquo;</li>
        
          <li><a href="../../../index.html">Module code</a> &raquo;</li>
        
      <li>macop.algorithms.mono.HillClimberFirstImprovment</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <h1>Source code for macop.algorithms.mono.HillClimberFirstImprovment</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;Hill Climber First Improvment algorithm starting from new solution and explore using neighborhood and loop over the best one obtained from neighborhood search space</span>
<span class="sd">&quot;&quot;&quot;</span>

<span class="c1"># main imports</span>
<span class="kn">import</span> <span class="nn">logging</span>

<span class="c1"># module imports</span>
<span class="kn">from</span> <span class="nn">..Algorithm</span> <span class="kn">import</span> <span class="n">Algorithm</span>


<div class="viewcode-block" id="HillClimberFirstImprovment"><a class="viewcode-back" href="../../../../macop/macop.algorithms.mono.HillClimberFirstImprovment.html#macop.algorithms.mono.HillClimberFirstImprovment.HillClimberFirstImprovment">[docs]</a><span class="k">class</span> <span class="nc">HillClimberFirstImprovment</span><span class="p">(</span><span class="n">Algorithm</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Hill Climber First Improvment used as quick exploration optimisation algorithm</span>

<span class="sd">    This algorithm do a neighborhood exploration of a new generated solution (by doing operation on the current solution obtained) in order to find a better solution from the neighborhood space.</span>
<span class="sd">    Then replace the current solution by the first one from the neighbordhood space which is better than the current solution.</span>
<span class="sd">    Do these steps until a number of evaluation (stopping criterion) is reached.</span>

<span class="sd">    Attributes:</span>
<span class="sd">        initalizer: {function} -- basic function strategy to initialize solution</span>
<span class="sd">        evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)</span>
<span class="sd">        operators: {[Operator]} -- list of operator to use when launching algorithm</span>
<span class="sd">        policy: {Policy} -- Policy class implementation strategy to select operators</span>
<span class="sd">        validator: {function} -- basic function to check if solution is valid or not under some constraints</span>
<span class="sd">        maximise: {bool} -- specify kind of optimisation problem </span>
<span class="sd">        currentSolution: {Solution} -- current solution managed for current evaluation</span>
<span class="sd">        bestSolution: {Solution} -- best solution found so far during running algorithm</span>
<span class="sd">        callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm</span>
<span class="sd">    &quot;&quot;&quot;</span>
<div class="viewcode-block" id="HillClimberFirstImprovment.run"><a class="viewcode-back" href="../../../../macop/macop.algorithms.mono.HillClimberFirstImprovment.html#macop.algorithms.mono.HillClimberFirstImprovment.HillClimberFirstImprovment.run">[docs]</a>    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">evaluations</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;</span>
<span class="sd">        Run the local search algorithm</span>

<span class="sd">        Args:</span>
<span class="sd">            evaluations: {int} -- number of Local search evaluations</span>
<span class="sd">            </span>
<span class="sd">        Returns:</span>
<span class="sd">            {Solution} -- best solution found</span>
<span class="sd">        &quot;&quot;&quot;</span>

        <span class="c1"># by default use of mother method to initialize variables</span>
        <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">evaluations</span><span class="p">)</span>

        <span class="c1"># initialize current solution and best solution</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">initRun</span><span class="p">()</span>

        <span class="n">solutionSize</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_currentSolution</span><span class="o">.</span><span class="n">_size</span>

        <span class="c1"># local search algorithm implementation</span>
        <span class="k">while</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">():</span>

            <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">solutionSize</span><span class="p">):</span>

                <span class="c1"># update current solution using policy</span>
                <span class="n">newSolution</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_currentSolution</span><span class="p">)</span>

                <span class="c1"># if better solution than currently, replace it and stop current exploration (first improvment)</span>
                <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">isBetter</span><span class="p">(</span><span class="n">newSolution</span><span class="p">):</span>
                    <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span> <span class="o">=</span> <span class="n">newSolution</span>
                    <span class="k">break</span>

                <span class="c1"># increase number of evaluations</span>
                <span class="bp">self</span><span class="o">.</span><span class="n">increaseEvaluation</span><span class="p">()</span>

                <span class="bp">self</span><span class="o">.</span><span class="n">progress</span><span class="p">()</span>
                <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;---- Current </span><span class="si">{</span><span class="n">newSolution</span><span class="si">}</span><span class="s2"> - SCORE </span><span class="si">{</span><span class="n">newSolution</span><span class="o">.</span><span class="n">fitness</span><span class="p">()</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>

                <span class="c1"># stop algorithm if necessary</span>
                <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">stop</span><span class="p">():</span>
                    <span class="k">break</span>

            <span class="c1"># set new current solution using best solution found in this neighbor search</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">_currentSolution</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span>

        <span class="n">logging</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;End of </span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, best solution found </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>

        <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_bestSolution</span></div></div>
</pre></div>

           </div>
           
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2020, Jérôme BUISINE

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.Navigation.enable(true);
      });
  </script>

  
  
    
   

</body>
</html>