"""Multi-objective Checkpoints classes implementations
"""
# main imports
import os
import logging
import numpy as np
# module imports
from .base import Callback
from ..utils.color import macop_text, macop_line
[docs]class MultiCheckpoint(Callback):
"""
MultiCheckpoint is used for loading previous computations and start again after loading checkpoint
Attributes:
algo: {Algorithm} -- main algorithm instance reference
every: {int} -- checkpoint frequency used (based on number of evaluations)
filepath: {str} -- file path where checkpoints will be saved
"""
[docs] def run(self):
"""
Check if necessary to do backup based on `every` variable
"""
# get current population
population = self._algo._population
currentEvaluation = self._algo.getGlobalEvaluation()
# backup if necessary
if currentEvaluation % self._every == 0:
logging.info("Checkpoint is done into " + self._filepath)
with open(self._filepath, 'w') as f:
for solution in population:
solutionData = ""
solutionSize = len(solution._data)
for index, val in enumerate(solution._data):
solutionData += str(val)
if index < solutionSize - 1:
solutionData += ' '
line = str(currentEvaluation) + ';'
for i in range(len(self._algo._evaluator)):
line += str(solution._scores[i]) + ';'
line += solutionData + ';\n'
f.write(line)
[docs] def load(self):
"""
Load backup lines as population and set algorithm state (population and pareto front) at this backup
"""
if os.path.exists(self._filepath):
logging.info('Load best solution from last checkpoint')
with open(self._filepath) as f:
# read data for each line
for i, line in enumerate(f.readlines()):
data = line.replace(';\n', '').split(';')
# only the first time
if i == 0:
# get evaluation information
globalEvaluation = int(data[0])
if self._algo.getParent() is not None:
self._algo.getParen()._numberOfEvaluations = globalEvaluation
else:
self._algo._numberOfEvaluations = globalEvaluation
nObjectives = len(self._algo._evaluator)
scores = [float(s) for s in data[1:nObjectives + 1]]
# get best solution data information
solutionData = list(map(int, data[-1].split(' ')))
# initialize and fill with data
self._algo._population[i] = self._algo._initializer()
self._algo._population[i]._data = np.array(solutionData)
self._algo._population[i]._scores = scores
self._algo._pfPop.append(self._algo._population[i])
print(macop_line())
print(macop_text(f'Load of available population from `{self._filepath}`'))
print(macop_text(f'Restart algorithm from evaluation {self._algo._numberOfEvaluations}.'))
else:
print(macop_text('No backup found... Start running algorithm from evaluation 0.'))
logging.info("Can't load backup... Backup filepath not valid in Checkpoint")
print(macop_line())
[docs]class ParetoCheckpoint(Callback):
"""
Pareto checkpoint is used for loading previous computations and start again after loading checkpoint
Attributes:
algo: {Algorithm} -- main algorithm instance reference
every: {int} -- checkpoint frequency used (based on number of evaluations)
filepath: {str} -- file path where checkpoints will be saved
"""
[docs] def run(self):
"""
Check if necessary to do backup based on `every` variable
"""
# get current population
pfPop = self._algo._pfPop
currentEvaluation = self._algo.getGlobalEvaluation()
# backup if necessary
if currentEvaluation % self._every == 0:
logging.info("Checkpoint is done into " + self._filepath)
with open(self._filepath, 'w') as f:
for solution in pfPop:
solutionData = ""
solutionSize = len(solution._data)
for index, val in enumerate(solution._data):
solutionData += str(val)
if index < solutionSize - 1:
solutionData += ' '
line = ''
for i in range(len(self._algo._evaluator)):
line += str(solution._scores[i]) + ';'
line += solutionData + ';\n'
f.write(line)
[docs] def load(self):
"""
Load backup lines as population and set algorithm state (population and pareto front) at this backup
"""
if os.path.exists(self._filepath):
logging.info('Load best solution from last checkpoint')
with open(self._filepath) as f:
# reinit pf population
self._algo._pfPop = []
# retrieve class name from algo
class_name = type(self._algo._population[0]).__name__
# dynamically load solution class if unknown
if class_name not in sys.modules:
load_class(class_name, globals())
# read data for each line
for line in f.readlines():
data = line.replace(';\n', '').split(';')
nObjectives = len(self._algo._evaluator)
scores = [float(s) for s in data[0:nObjectives]]
# get best solution data information
solutionData = list(map(int, data[-1].split(' ')))
newSolution = getattr(
globals()['macop.solutions.' + class_name],
class_name)(solutionData, len(solutionData))
newSolution._scores = scores
self._algo._pfPop.append(newSolution)
print(
macop_text(f'Load of available pareto front backup from `{ self._filepath}`'))
else:
print(macop_text('No pareto front found... Start running algorithm with new pareto front population.'))
logging.info("No pareto front backup used...")
print(macop_line())