macop.algorithms.multi

Multi-objetive classes algorithm

Functions

moEvaluator(solution, evaluator, weights)

Classes

MOEAD(mu, T, initalizer, evaluator, …[, …])

Multi-Ojective Evolutionary Algorithm with Scalar Decomposition

MOSubProblem(index, weights, initalizer, …)

Specific MO sub problem used into MOEAD

class macop.algorithms.multi.MOEAD(mu, T, initalizer, evaluator, operators, policy, validator, maximise=True, parent=None, verbose=True)[source]

Multi-Ojective Evolutionary Algorithm with Scalar Decomposition

mu

{int} – number of sub problems

T

{[float]} – number of neightbors for each sub problem

nObjectives

{int} – number of objectives (based of number evaluator)

initalizer

{function} – basic function strategy to initialize solution

evaluator

{[function]} – list of basic function in order to obtained fitness (multiple objectives)

operators

{[Operator]} – list of operator to use when launching algorithm

policy

{Policy} – Policy class implementation strategy to select operators

validator

{function} – basic function to check if solution is valid or not under some constraints

maximise

{bool} – specify kind of optimisation problem

verbose

{bool} – verbose or not information about the algorithm

population

[{Solution}] – population of solution, one for each sub problem

pfPop

[{Solution}] – pareto front population

weights

[[{float}]] – random weights used for custom mu sub problems

callbacks

{[Callback]} – list of Callback class implementation to do some instructions every number of evaluations and load when initializing algorithm

end()[source]

Display end message into run method

initRun()[source]

Method which initialiazes or re-initializes the whole algorithm context specifically for MOEAD

progress()[source]

Log progress and apply callbacks if necessary

run(evaluations)[source]

Run the local search algorithm

Parameters

evaluations – {int} – number of Local search evaluations

Returns

{Solution} – best solution found

class macop.algorithms.multi.MOSubProblem(index, weights, initalizer, evaluator, operators, policy, validator, maximise=True, parent=None, verbose=True)[source]

Specific MO sub problem used into MOEAD

index

{int} – sub problem index

weights

{[float]} – sub problems objectives weights

initalizer

{function} – basic function strategy to initialize solution

evaluator

{function} – basic function in order to obtained fitness (mono or multiple objectives)

operators

{[Operator]} – list of operator to use when launching algorithm

policy

{Policy} – Policy class implementation strategy to select operators

validator

{function} – basic function to check if solution is valid or not under some constraints

maximise

{bool} – specify kind of optimisation problem

verbose

{bool} – verbose or not information about the algorithm

currentSolution

{Solution} – current solution managed for current evaluation

bestSolution

{Solution} – best solution found so far during running algorithm

callbacks

{[Callback]} – list of Callback class implementation to do some instructions every number of evaluations and load when initializing algorithm

run(evaluations)[source]

Run the local search algorithm

Parameters

evaluations – {int} – number of evaluations

Returns

{Solution} – best solution found