# main imports import logging # module imports from .Algorithm import Algorithm from.LocalSearch import LocalSearch class IteratedLocalSearch(Algorithm): def run(self, _evaluations, _ls_evaluations=100): # by default use of mother method to initialize variables super().run(_evaluations) # enable checkpoint for ILS if self.checkpoint is not None: self.resume() # passing global evaluation param from ILS ls = LocalSearch(self.initializer, self.evaluator, self.operators, self.policy, self.validator, self.maximise, _parent=self) # set same checkpoint if exists if self.checkpoint is not None: ls.setCheckpoint(self.checkpoint) # local search algorithm implementation while self.getGlobalEvaluation() < self.maxEvalutations: # create and search solution from local search newSolution = ls.run(_ls_evaluations) # if better solution than currently, replace it if self.isBetter(newSolution): self.bestSolution = newSolution # number of evaluatins increased from LocalSearch # increase number of evaluations and progress are then not necessary there #self.increaseEvaluation() #self.progress() self.information() logging.info("End of %s, best solution found %s" % (type(self).__name__, self.bestSolution)) return self.bestSolution