"""Crossover implementations for discrete solutions kind """ # main imports import random import sys # module imports from ..base import Crossover class SimpleCrossover(Crossover): """Crossover implementation which generated new solution by splitting at mean size best solution and current solution Attributes: kind: {Algorithm} -- specify the kind of operator Example: >>> # operators import >>> from macop.operators.discrete.crossovers import SimpleCrossover >>> from macop.operators.discrete.mutators import SimpleMutation >>> # policy import >>> from macop.policies.reinforcement import UCBPolicy >>> # solution and algorithm >>> from macop.solutions.discrete import BinarySolution >>> from macop.algorithms.mono import IteratedLocalSearch >>> from macop.algorithms.mono import HillClimberFirstImprovment >>> # evaluator import >>> from macop.evaluators.discrete.mono import KnapsackEvaluator >>> # evaluator initialization (worths objects passed into data) >>> worths = [ random.randint(0, 20) for i in range(10) ] >>> evaluator = KnapsackEvaluator(data={'worths': worths}) >>> # validator specification (based on weights of each objects) >>> weights = [ random.randint(20, 30) for i in range(10) ] >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution._data) if value == 1]) < 200 else False >>> # initializer function with lambda function >>> initializer = lambda x=10: BinarySolution.random(x, validator) >>> # operators list with crossover and mutation >>> simple_crossover = SimpleCrossover() >>> simple_mutation = SimpleMutation() >>> operators = [simple_crossover, simple_mutation] >>> policy = UCBPolicy(operators) >>> local_search = HillClimberFirstImprovment(initializer, evaluator, operators, policy, validator, maximise=True, verbose=False) >>> algo = IteratedLocalSearch(initializer, evaluator, operators, policy, validator, localSearch=local_search, maximise=True, verbose=False) >>> # using best solution, simple crossover is applied >>> best_solution = algo.run(100) >>> list(best_solution._data) [1, 1, 0, 1, 0, 1, 1, 1, 0, 1] >>> new_solution_1 = initializer() >>> new_solution_2 = initializer() >>> offspring_solution = simple_crossover.apply(new_solution_1, new_solution_2) >>> list(offspring_solution._data) [0, 1, 1, 0, 1, 0, 1, 1, 0, 1] """ def apply(self, solution1, solution2=None): """Create new solution based on best solution found and solution passed as parameter Args: solution1: {Solution} -- the first solution to use for generating new solution solution2: {Solution} -- the second solution to use for generating new solution Returns: {Solution} -- new generated solution """ size = solution1._size # copy data of solution firstData = solution1._data.copy() # copy of solution2 as output solution copy_solution = solution2.clone() splitIndex = int(size / 2) if random.uniform(0, 1) > 0.5: copy_solution._data[splitIndex:] = firstData[splitIndex:] else: copy_solution._data[:splitIndex] = firstData[:splitIndex] return copy_solution class RandomSplitCrossover(Crossover): """Crossover implementation which generated new solution by randomly splitting best solution and current solution Attributes: kind: {KindOperator} -- specify the kind of operator Example: >>> # operators import >>> from macop.operators.discrete.crossovers import RandomSplitCrossover >>> from macop.operators.discrete.mutators import SimpleMutation >>> # policy import >>> from macop.policies.reinforcement import UCBPolicy >>> # solution and algorithm >>> from macop.solutions.discrete import BinarySolution >>> from macop.algorithms.mono import IteratedLocalSearch >>> from macop.algorithms.mono import HillClimberFirstImprovment >>> # evaluator import >>> from macop.evaluators.discrete.mono import KnapsackEvaluator >>> # evaluator initialization (worths objects passed into data) >>> worths = [ random.randint(0, 20) for i in range(10) ] >>> evaluator = KnapsackEvaluator(data={'worths': worths}) >>> # validator specification (based on weights of each objects) >>> weights = [ random.randint(20, 30) for i in range(10) ] >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution._data) if value == 1]) < 200 else False >>> # initializer function with lambda function >>> initializer = lambda x=10: BinarySolution.random(x, validator) >>> # operators list with crossover and mutation >>> random_split_crossover = RandomSplitCrossover() >>> simple_mutation = SimpleMutation() >>> operators = [random_split_crossover, simple_mutation] >>> policy = UCBPolicy(operators) >>> local_search = HillClimberFirstImprovment(initializer, evaluator, operators, policy, validator, maximise=True, verbose=False) >>> algo = IteratedLocalSearch(initializer, evaluator, operators, policy, validator, localSearch=local_search, maximise=True, verbose=False) >>> # using best solution, simple crossover is applied >>> best_solution = algo.run(100) >>> list(best_solution._data) [1, 1, 1, 0, 1, 0, 1, 1, 1, 0] >>> new_solution_1 = initializer() >>> new_solution_2 = initializer() >>> offspring_solution = random_split_crossover.apply(new_solution_1, new_solution_2) >>> list(offspring_solution._data) [0, 0, 0, 1, 1, 0, 0, 1, 0, 0] """ def apply(self, solution1, solution2=None): """Create new solution based on best solution found and solution passed as parameter Args: solution1: {Solution} -- the first solution to use for generating new solution solution2: {Solution} -- the second solution to use for generating new solution Returns: {Solution} -- new generated solution """ size = solution1._size # copy data of solution firstData = solution1._data.copy() # copy of solution2 as output solution copy_solution = solution2.clone() splitIndex = random.randint(0, size) if random.uniform(0, 1) > 0.5: copy_solution._data[splitIndex:] = firstData[splitIndex:] else: copy_solution._data[:splitIndex] = firstData[:splitIndex] return copy_solution