"""Mono-objective available algorithms """ # main imports import logging # module imports from macop.algorithms.base import Algorithm class HillClimberFirstImprovment(Algorithm): """Hill Climber First Improvment used as quick exploration optimisation algorithm - First, this algorithm do a neighborhood exploration of a new generated solution (by doing operation on the current solution obtained) in order to find a better solution from the neighborhood space; - Then replace the current solution by the first one from the neighbordhood space which is better than the current solution; - And do these steps until a number of evaluation (stopping criterion) is reached. Attributes: initalizer: {function} -- basic function strategy to initialise solution evaluator: {:class:`~macop.evaluators.base.Evaluator`} -- evaluator instance in order to obtained fitness (mono or multiple objectives) operators: {[:class:`~macop.operators.base.Operator`]} -- list of operator to use when launching algorithm policy: {:class:`~macop.policies.base.Policy`} -- Policy class implementation strategy to select operators validator: {function} -- basic function to check if solution is valid or not under some constraints maximise: {bool} -- specify kind of optimisation problem currentSolution: {:class:`~macop.solutions.base.Solution`} -- current solution managed for current evaluation bestSolution: {:class:`~macop.solutions.base.Solution`} -- best solution found so far during running algorithm callbacks: {[:class:`~macop.callbacks.base.Callback`]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initialising algorithm parent: {:class:`~macop.algorithms.base.Algorithm`} -- parent algorithm reference in case of inner Algorithm instance (optional) Example: >>> import random >>> >>> # operators import >>> from macop.operators.discrete.crossovers import SimpleCrossover >>> from macop.operators.discrete.mutators import SimpleMutation >>> >>> # policy import >>> from macop.policies.classicals import RandomPolicy >>> >>> # solution and algorithm imports >>> from macop.solutions.discrete import BinarySolution >>> from macop.algorithms.mono import HillClimberFirstImprovment >>> >>> # evaluator import >>> from macop.evaluators.discrete.mono import KnapsackEvaluator >>> >>> # evaluator initialization (worths objects passed into data) >>> problem_size = 20 >>> worths = [ random.randint(0, 20) for i in range(problem_size) ] >>> evaluator = KnapsackEvaluator(data={'worths': worths}) >>> >>> # validator specification (based on weights of each objects) >>> weights = [ random.randint(5, 30) for i in range(problem_size) ] >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution.data) if value == 1]) < 200 else False >>> >>> # initialiser function for binary solution using specific solution size >>> initialiser = lambda x=20: BinarySolution.random(x, validator) >>> >>> # operators list with crossover and mutation >>> operators = [SimpleCrossover(), SimpleMutation()] >>> policy = RandomPolicy(operators) >>> algo = HillClimberFirstImprovment(initialiser, evaluator, operators, policy, validator, maximise=True, verbose=False) >>> >>> # run the algorithm >>> solution = algo.run(100) >>> solution._score 128 """ def run(self, evaluations): """ Run the local search algorithm Args: evaluations: {int} -- number of Local search evaluations Returns: {:class:`~macop.solutions.base.Solution`}: best solution found """ # by default use of mother method to initialise variables super().run(evaluations) # initialise current solution and best solution self.initRun() solutionSize = self._currentSolution._size # local search algorithm implementation while not self.stop(): for _ in range(solutionSize): # update current solution using policy newSolution = self.update(self._currentSolution) # if better solution than currently, replace it and stop current exploration (first improvment) if self.isBetter(newSolution): self._bestSolution = newSolution break # increase number of evaluations self.increaseEvaluation() self.progress() logging.info( f"---- Current {newSolution} - SCORE {newSolution.fitness}" ) # stop algorithm if necessary if self.stop(): break # set new current solution using best solution found in this neighbor search self._currentSolution = self._bestSolution logging.info( f"End of {type(self).__name__}, best solution found {self._bestSolution}" ) return self._bestSolution class HillClimberBestImprovment(Algorithm): """Hill Climber Best Improvment used as exploitation optimisation algorithm - First, this algorithm do a neighborhood exploration of a new generated solution (by doing operation on the current solution obtained) in order to find the best solution from the neighborhood space; - Then replace the best solution found from the neighbordhood space as current solution to use; - And do these steps until a number of evaluation (stopping criterion) is reached. Attributes: initalizer: {function} -- basic function strategy to initialise solution evaluator: {:class:`~macop.evaluators.base.Evaluator`} -- evaluator instance in order to obtained fitness (mono or multiple objectives) operators: {[:class:`~macop.operators.base.Operator`]} -- list of operator to use when launching algorithm policy: {:class:`~macop.policies.base.Policy`} -- Policy class implementation strategy to select operators validator: {function} -- basic function to check if solution is valid or not under some constraints maximise: {bool} -- specify kind of optimisation problem currentSolution: {:class:`~macop.solutions.base.Solution`} -- current solution managed for current evaluation bestSolution: {:class:`~macop.solutions.base.Solution`} -- best solution found so far during running algorithm callbacks: {[:class:`~macop.callbacks.base.Callback`]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initialising algorithm parent: {:class:`~macop.algorithms.base.Algorithm`} -- parent algorithm reference in case of inner Algorithm instance (optional) Example: >>> import random >>> >>> # operators import >>> from macop.operators.discrete.crossovers import SimpleCrossover >>> from macop.operators.discrete.mutators import SimpleMutation >>> >>> # policy import >>> from macop.policies.classicals import RandomPolicy >>> >>> # solution and algorithm imports >>> from macop.solutions.discrete import BinarySolution >>> from macop.algorithms.mono import HillClimberBestImprovment >>> >>> # evaluator import >>> from macop.evaluators.discrete.mono import KnapsackEvaluator >>> >>> # evaluator initialization (worths objects passed into data) >>> problem_size = 20 >>> worths = [ random.randint(0, 20) for i in range(problem_size) ] >>> evaluator = KnapsackEvaluator(data={'worths': worths}) >>> >>> # validator specification (based on weights of each objects) >>> weights = [ random.randint(5, 30) for i in range(problem_size) ] >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution.data) if value == 1]) < 200 else False >>> >>> # initialiser function for binary solution using specific solution size >>> initialiser = lambda x=20: BinarySolution.random(x, validator) >>> >>> # operators list with crossover and mutation >>> operators = [SimpleCrossover(), SimpleMutation()] >>> policy = RandomPolicy(operators) >>> algo = HillClimberBestImprovment(initialiser, evaluator, operators, policy, validator, maximise=True, verbose=False) >>> >>> # run the algorithm >>> solution = algo.run(100) >>> solution._score 104 """ def run(self, evaluations): """ Run the local search algorithm Args: evaluations: {int} -- number of Local search evaluations Returns: {:class:`~macop.solutions.base.Solution`}: best solution found """ # by default use of mother method to initialise variables super().run(evaluations) # initialise current solution and best solution self.initRun() solutionSize = self._currentSolution._size # local search algorithm implementation while not self.stop(): for _ in range(solutionSize): # update current solution using policy newSolution = self.update(self._currentSolution) # if better solution than currently, replace it if self.isBetter(newSolution): self._bestSolution = newSolution # increase number of evaluations self.increaseEvaluation() self.progress() logging.info( f"---- Current {newSolution} - SCORE {newSolution.fitness}" ) # stop algorithm if necessary if self.stop(): break # set new current solution using best solution found in this neighbor search self._currentSolution = self._bestSolution logging.info( f"End of {type(self).__name__}, best solution found {self._bestSolution}" ) return self._bestSolution class IteratedLocalSearch(Algorithm): """Iterated Local Search (ILS) used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise - A number of evaluations (`ls_evaluations`) is dedicated to local search process, here `HillClimberFirstImprovment` algorithm; - Starting with the new generated solution, the local search algorithm will return a new solution; - If the obtained solution is better than the best solution known into `IteratedLocalSearch`, then the solution is replaced; - Restart this process until stopping critirion (number of expected evaluations). Attributes: initalizer: {function} -- basic function strategy to initialise solution evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives) operators: {[:class:`~macop.operators.base.Operator`]} -- list of operator to use when launching algorithm policy: {:class:`~macop.policies.base.Policy`} -- Policy class implementation strategy to select operators validator: {function} -- basic function to check if solution is valid or not under some constraints maximise: {bool} -- specify kind of optimisation problem currentSolution: {:class:`~macop.solutions.base.Solution`} -- current solution managed for current evaluation bestSolution: {:class:`~macop.solutions.base.Solution`} -- best solution found so far during running algorithm localSearch: {:class:`~macop.algorithms.base.Algorithm`} -- current local search into ILS callbacks: {[:class:`~macop.callbacks.base.Callback`]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initialising algorithm parent: {:class:`~macop.algorithms.base.Algorithm`} -- parent algorithm reference in case of inner Algorithm instance (optional) Example: >>> import random >>> >>> # operators import >>> from macop.operators.discrete.crossovers import SimpleCrossover >>> from macop.operators.discrete.mutators import SimpleMutation >>> >>> # policy import >>> from macop.policies.classicals import RandomPolicy >>> >>> # import for solution and algorithm >>> from macop.solutions.discrete import BinarySolution >>> from macop.algorithms.mono import IteratedLocalSearch >>> from macop.algorithms.mono import HillClimberFirstImprovment >>> >>> # evaluator import >>> from macop.evaluators.discrete.mono import KnapsackEvaluator >>> >>> # evaluator initialization (worths objects passed into data) >>> problem_size = 20 >>> worths = [ random.randint(0, 20) for i in range(problem_size) ] >>> evaluator = KnapsackEvaluator(data={'worths': worths}) >>> >>> # validator specification (based on weights of each objects) >>> weights = [ random.randint(5, 30) for i in range(problem_size) ] >>> validator = lambda solution: True if sum([weights[i] for i, value in enumerate(solution.data) if value == 1]) < 200 else False >>> >>> # initialiser function with lambda function >>> initialiser = lambda x=20: BinarySolution.random(x, validator) >>> >>> # operators list with crossover and mutation >>> operators = [SimpleCrossover(), SimpleMutation()] >>> policy = RandomPolicy(operators) >>> local_search = HillClimberFirstImprovment(initialiser, evaluator, operators, policy, validator, maximise=True, verbose=False) >>> algo = IteratedLocalSearch(initialiser, evaluator, operators, policy, validator, localSearch=local_search, maximise=True, verbose=False) >>> >>> # run the algorithm using specific number of evaluations for local search >>> solution = algo.run(100, ls_evaluations=10) >>> solution._score 137 """ def __init__(self, initialiser, evaluator, operators, policy, validator, localSearch, maximise=True, parent=None, verbose=True): """Iterated Local Search Algorithm initialisation with use of specific LocalSearch {:class:`~macop.algorithms.base.Algorithm`} instance Args: initialiser: {function} -- basic function strategy to initialise solution evaluator: {:class:`~macop.evaluators.base.Evaluator`} -- evaluator instance in order to obtained fitness (mono or multiple objectives) operators: {[:class:`~macop.operators.base.Operator`]} -- list of operator to use when launching algorithm policy: {:class:`~macop.policies.base.Policy`} -- Policy implementation strategy to select operators validator: {function} -- basic function to check if solution is valid or not under some constraints localSearch: {:class:`~macop.algorithms.base.Algorithm`} -- current local search into ILS maximise: {bool} -- specify kind of optimisation problem parent: {:class:`~macop.algorithms.base.Algorithm`} -- parent algorithm reference in case of inner Algorithm instance (optional) verbose: {bool} -- verbose or not information about the algorithm """ super().__init__(initialiser, evaluator, operators, policy, validator, maximise, parent, verbose) # specific local search associated with current algorithm self._localSearch = localSearch # need to attach current algorithm as parent self._localSearch.setParent(self) def run(self, evaluations, ls_evaluations=100): """ Run the iterated local search algorithm using local search (EvE compromise) Args: evaluations: {int} -- number of global evaluations for ILS ls_evaluations: {int} -- number of Local search evaluations (default: 100) Returns: {:class:`~macop.solutions.base.Solution`}: best solution found """ # by default use of mother method to initialise variables super().run(evaluations) # enable resuming for ILS self.resume() # initialise current solution self.initRun() # add same callbacks for callback in self._callbacks: self._localSearch.addCallback(callback) # local search algorithm implementation while not self.stop(): # create and search solution from local search newSolution = self._localSearch.run(ls_evaluations) # if better solution than currently, replace it if self.isBetter(newSolution): self._bestSolution = newSolution # number of evaluatins increased from LocalSearch # increase number of evaluations and progress are then not necessary there #self.increaseEvaluation() #self.progress() self.information() logging.info( f"End of {type(self).__name__}, best solution found {self._bestSolution}" ) self.end() return self._bestSolution