Source code for macop.operators.crossovers.SimpleCrossover

"""Crossover implementation which generated new solution by splitting at mean size best solution and current solution
"""
# main imports
import random
import sys
import pkgutil

# module imports
from .Crossover import Crossover
from ...utils.modules import load_class

# import all available solutions
# for loader, module_name, is_pkg in pkgutil.walk_packages(
#         path=[
#             str(pathlib.Path(__file__).parent.absolute()) + '/../../solutions'
#         ],
#         prefix='macop.solutions.'):
#     _module = loader.find_module(module_name).load_module(module_name)
#     globals()[module_name] = _module


[docs]class SimpleCrossover(Crossover): """Crossover implementation which generated new solution by splitting at mean size best solution and current solution Attributes: kind: {Algorithm} -- specify the kind of operator """
[docs] def apply(self, solution): """Create new solution based on best solution found and solution passed as parameter Args: solution: {Solution} -- the solution to use for generating new solution Returns: {Solution} -- new generated solution """ size = solution._size # copy data of solution firstData = solution._data.copy() # get best solution from current algorithm secondData = self._algo._bestSolution._data.copy() splitIndex = int(size / 2) if random.uniform(0, 1) > 0.5: firstData[splitIndex:(size - 1)] = firstData[splitIndex:(size - 1)] currentData = firstData else: secondData[splitIndex:(size - 1)] = firstData[splitIndex:(size - 1)] currentData = secondData # create solution of same kind with new data class_name = type(solution).__name__ # dynamically load solution class if unknown if class_name not in sys.modules: load_class(class_name, globals()) return getattr(globals()['macop.solutions.' + class_name], class_name)(currentData, size)