Source code for macop.algorithms.multi.MOSubProblem

"""MOEAD sub problem algorithm class
"""

# main imports
import logging

# module imports
from ..Algorithm import Algorithm


[docs]class MOSubProblem(Algorithm): """Specific MO sub problem used into MOEAD Attributes: index: {int} -- sub problem index weights: {[float]} -- sub problems objectives weights initalizer: {function} -- basic function strategy to initialize solution evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives) operators: {[Operator]} -- list of operator to use when launching algorithm policy: {Policy} -- Policy class implementation strategy to select operators validator: {function} -- basic function to check if solution is valid or not under some constraints maximise: {bool} -- specify kind of optimisation problem currentSolution: {Solution} -- current solution managed for current evaluation bestSolution: {Solution} -- best solution found so far during running algorithm callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm """ def __init__(self, index, weights, initalizer, evaluator, operators, policy, validator, maximise=True, parent=None): super().__init__(initalizer, evaluator, operators, policy, validator, maximise, parent) self._index = index self._weights = weights
[docs] def run(self, evaluations): """ Run the local search algorithm Args: evaluations: {int} -- number of evaluations Returns: {Solution} -- best solution found """ # by default use of mother method to initialize variables super().run(evaluations) # initialize solution if necessary if self._bestSolution is None: self.initRun() # new operators list keep track of current sub problem for op in self._operators: op.setAlgo(self) for _ in range(evaluations): # keep reference of sub problem used self._policy.setAlgo(self) # update solution using policy newSolution = self.update(self._bestSolution) # if better solution than currently, replace it if self.isBetter(newSolution): self._bestSolution = newSolution # increase number of evaluations self.increaseEvaluation() self.progress() # stop algorithm if necessary if self.stop(): break logging.info(f"---- Current {newSolution} - SCORE {newSolution.fitness()}") logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}") return self._bestSolution