"""Multi Checkpoint class implementation
"""
# main imports
import os
import logging
import numpy as np
# module imports
from .Callback import Callback
from ..utils.color import macop_text, macop_line
[docs]class MultiCheckpoint(Callback):
"""
MultiCheckpoint is used for loading previous computations and start again after loading checkpoint
Attributes:
algo: {Algorithm} -- main algorithm instance reference
every: {int} -- checkpoint frequency used (based on number of evaluations)
filepath: {str} -- file path where checkpoints will be saved
"""
[docs] def run(self):
"""
Check if necessary to do backup based on `every` variable
"""
# get current population
population = self.algo.population
currentEvaluation = self.algo.getGlobalEvaluation()
# backup if necessary
if currentEvaluation % self.every == 0:
logging.info("Checkpoint is done into " + self.filepath)
with open(self.filepath, 'w') as f:
for solution in population:
solutionData = ""
solutionSize = len(solution.data)
for index, val in enumerate(solution.data):
solutionData += str(val)
if index < solutionSize - 1:
solutionData += ' '
line = str(currentEvaluation) + ';'
for i in range(len(self.algo.evaluator)):
line += str(solution.scores[i]) + ';'
line += solutionData + ';\n'
f.write(line)
[docs] def load(self):
"""
Load backup lines as population and set algorithm state (population and pareto front) at this backup
"""
if os.path.exists(self.filepath):
logging.info('Load best solution from last checkpoint')
with open(self.filepath) as f:
# read data for each line
for i, line in enumerate(f.readlines()):
data = line.replace(';\n', '').split(';')
# only the first time
if i == 0:
# get evaluation information
globalEvaluation = int(data[0])
if self.algo.parent is not None:
self.algo.parent.numberOfEvaluations = globalEvaluation
else:
self.algo.numberOfEvaluations = globalEvaluation
nObjectives = len(self.algo.evaluator)
scores = [float(s) for s in data[1:nObjectives + 1]]
# get best solution data information
solutionData = list(map(int, data[-1].split(' ')))
self.algo.population[i].data = np.array(solutionData)
self.algo.population[i].scores = scores
self.algo.pfPop[i] = self.algo.population[i]
print(macop_line())
print(
macop_text('Load of available population from `{}`'.format(
self.filepath)))
print(
macop_text('Restart algorithm from evaluation {}.'.format(
self.algo.numberOfEvaluations)))
else:
print(
macop_text(
'No backup found... Start running algorithm from evaluation 0.'
))
logging.info(
"Can't load backup... Backup filepath not valid in Checkpoint")
print(macop_line())