"""Pareto front Checkpoint class implementation
"""
# main imports
import os
import logging
import numpy as np
import pkgutil
# module imports
from .Callback import Callback
from ..utils.color import macop_text, macop_line
# import all available solutions
for loader, module_name, is_pkg in pkgutil.walk_packages(
path=['macop/solutions'], prefix='macop.solutions.'):
_module = loader.find_module(module_name).load_module(module_name)
globals()[module_name] = _module
[docs]class ParetoCheckpoint(Callback):
"""
Pareto checkpoint is used for loading previous computations and start again after loading checkpoint
Attributes:
algo: {Algorithm} -- main algorithm instance reference
every: {int} -- checkpoint frequency used (based on number of evaluations)
filepath: {str} -- file path where checkpoints will be saved
"""
[docs] def run(self):
"""
Check if necessary to do backup based on `every` variable
"""
# get current population
pfPop = self.algo.pfPop
currentEvaluation = self.algo.getGlobalEvaluation()
# backup if necessary
if currentEvaluation % self.every == 0:
logging.info("Checkpoint is done into " + self.filepath)
with open(self.filepath, 'w') as f:
for solution in pfPop:
solutionData = ""
solutionSize = len(solution.data)
for index, val in enumerate(solution.data):
solutionData += str(val)
if index < solutionSize - 1:
solutionData += ' '
line = ''
for i in range(len(self.algo.evaluator)):
line += str(solution.scores[i]) + ';'
line += solutionData + ';\n'
f.write(line)
[docs] def load(self):
"""
Load backup lines as population and set algorithm state (population and pareto front) at this backup
"""
if os.path.exists(self.filepath):
logging.info('Load best solution from last checkpoint')
with open(self.filepath) as f:
# reinit pf population
self.algo.pfPop = []
# retrieve class name from algo
class_name = type(self.algo.population[0]).__name__
# read data for each line
for line in f.readlines():
data = line.replace(';\n', '').split(';')
nObjectives = len(self.algo.evaluator)
scores = [float(s) for s in data[0:nObjectives]]
# get best solution data information
solutionData = list(map(int, data[-1].split(' ')))
newSolution = getattr(
globals()['macop.solutions.' + class_name],
class_name)(solutionData, len(solutionData))
newSolution.scores = scores
self.algo.pfPop.append(newSolution)
print(
macop_text(
'Load of available pareto front backup from `{}`'.format(
self.filepath)))
else:
print(
macop_text(
'No pareto front found... Start running algorithm with new pareto front population.'
))
logging.info("No pareto front backup used...")
print(macop_line())