macop.algorithms.mono.IteratedLocalSearch¶
Iterated Local Search Algorithm implementation
Classes
|
Iterated Local Search used to avoir local optima and increave EvE (Exploration vs Exploitation) compromise |
-
class
macop.algorithms.mono.IteratedLocalSearch.
IteratedLocalSearch
(_initalizer, _evaluator, _operators, _policy, _validator, _maximise=True, _parent=None)[source]¶ Iterated Local Search used to avoir local optima and increave EvE (Exploration vs Exploitation) compromise
-
initalizer
¶ {function} – basic function strategy to initialize solution
-
evaluator
¶ {function} – basic function in order to obtained fitness (mono or multiple objectives)
-
operators
¶ {[Operator]} – list of operator to use when launching algorithm
-
policy
¶ {Policy} – Policy class implementation strategy to select operators
-
validator
¶ {function} – basic function to check if solution is valid or not under some constraints
-
maximise
¶ {bool} – specify kind of optimization problem
-
currentSolution
¶ {Solution} – current solution managed for current evaluation
-
bestSolution
¶ {Solution} – best solution found so far during running algorithm
-
callbacks
¶ {[Callback]} – list of Callback class implementation to do some instructions every number of evaluations and load when initializing algorithm
-
run
(_evaluations, _ls_evaluations=100)[source]¶ Run the iterated local search algorithm using local search (EvE compromise)
- Parameters
_evaluations – {int} – number of global evaluations for ILS
_ls_evaluations – {int} – number of Local search evaluations (default: 100)
- Returns
{Solution} – best solution found
-