IPFML ===== Image Processing For Machine Learning package. How to use ? ------------ To use, simply do : ```python from PIL import Image from ipfml import image_processing img = Image.open('path/to/image.png') s = image_processing.get_LAB_L_SVD_s(img) ``` Modules ------- This project contains modules. - **img_processing** : *PIL image processing part* - fig2data(fig): *Convert a Matplotlib figure to a 3D numpy array with RGB channels and return it* - fig2img(fig): *Convert a Matplotlib figure to a PIL Image in RGB format and return it* - get_LAB_L_SVD_U(image): *Returns U SVD from L of LAB Image information* - get_LAB_L_SVD_s(image): *Returns s (Singular values) SVD from L of LAB Image information* - get_LAB_L_SVD_V(image): *Returns V SVD from L of LAB Image information* - divide_in_blocks(image, block_size): *Divide image into equal size blocks* - normalize_arr(arr): *Normalize array values* - normalize_arr_with_range(arr, min, max): *Normalize array values with specific min and max values* - rgb_to_mscn(image): *Convert RGB Image into Mean Subtracted Contrast Normalized (MSCN) using only gray level* - **metrics** : *Metrics computation of PIL image* - get_SVD(image): *Transforms PIL Image into SVD* - get_SVD_U(image): *Transforms PIL Image into SVD and returns only 'U' part* - get_SVD_s(image): *Transforms PIL Image into SVD and returns only 's' part* - get_SVD_V(image): *Transforms PIL Image into SVD and returns only 'V' part* - get_LAB(image): *Transforms PIL Image into LAB* - get_LAB_L(image): *Transforms PIL Image into LAB and returns only 'L' part* - get_LAB_A(image): *Transforms PIL Image into LAB and returns only 'A' part* - get_LAB_B(image): *Transforms PIL Image into LAB and returns only 'B' part* - get_XYZ(image): *Transforms PIL Image into XYZ* - get_XYZ_X(image): *Transforms PIL Image into XYZ and returns only 'X' part* - get_XYZ_Y(image): *Transforms PIL Image into XYZ and returns only 'Y' part* - get_XYZ_Z(image): *Transforms PIL Image into XYZ and returns only 'Z' part* - **ts_model_helper** : *contains helpful function to save or display model information and performance of tensorflow model* - save(history, filename): *Function which saves data from neural network model* - show(history, filename): *Function which shows data from neural network model* All these modules will be enhanced during development of the project How to contribute ----------------- This git project uses [git-flow](https://danielkummer.github.io/git-flow-cheatsheet/) implementation. You are free to contribute to it.