Search.setIndex({docnames:["contributing","description","examples","index","ipfml"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,sphinx:55},filenames:["contributing.rst","description.rst","examples.rst","index.rst","ipfml.rst"],objects:{"ipfml.filters":{noise:[4,0,0,"-"]},"ipfml.filters.noise":{cauchy_noise:[4,1,1,""],gaussian_noise:[4,1,1,""],laplace_noise:[4,1,1,""],log_normal_noise:[4,1,1,""],mut_white_noise:[4,1,1,""],salt_pepper_noise:[4,1,1,""],white_noise:[4,1,1,""]},"ipfml.metrics":{get_LAB:[4,1,1,""],get_LAB_L:[4,1,1,""],get_LAB_a:[4,1,1,""],get_LAB_b:[4,1,1,""],get_SVD:[4,1,1,""],get_SVD_U:[4,1,1,""],get_SVD_V:[4,1,1,""],get_SVD_s:[4,1,1,""],get_XYZ:[4,1,1,""],get_XYZ_X:[4,1,1,""],get_XYZ_Y:[4,1,1,""],get_XYZ_Z:[4,1,1,""],get_bits_img:[4,1,1,""],get_low_bits_img:[4,1,1,""],gray_to_mscn:[4,1,1,""]},"ipfml.processing":{divide_in_blocks:[4,1,1,""],get_LAB_L_SVD:[4,1,1,""],get_LAB_L_SVD_U:[4,1,1,""],get_LAB_L_SVD_V:[4,1,1,""],get_LAB_L_SVD_s:[4,1,1,""],normalize_2D_arr:[4,1,1,""],normalize_arr:[4,1,1,""],normalize_arr_with_range:[4,1,1,""],rgb_to_LAB_L_bits:[4,1,1,""],rgb_to_LAB_L_low_bits:[4,1,1,""],rgb_to_grey_low_bits:[4,1,1,""],rgb_to_mscn:[4,1,1,""]},ipfml:{metrics:[4,0,0,"-"],processing:[4,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:function"},terms:{"default":4,"import":[1,2,4],"return":4,"true":4,The:4,Using:[2,3],account:4,ackag:3,after:2,all:[2,4],alreadi:2,amount:4,appli:[2,4],arang:4,arr:4,arr_norm:4,arrai:4,avail:2,begin:4,below:2,bit:[2,4],bits_img:4,bits_lab_l_img:4,block:4,block_siz:4,blocks_l:4,branch:0,can:2,canal:4,cauchi:4,cauchy_nois:4,chanel:[2,4],channel:4,compat:4,compress:4,contain:4,content:3,contrast:4,contribut:3,convert:[2,4],correct:4,creat:0,data:4,decreas:4,descript:3,develop:3,dimens:4,distribut:4,distribution_interv:4,divid:4,divide_in_block:4,document:[2,3],dure:3,each:4,end:4,equal:4,exampl:[3,4],fals:4,featur:0,filter:3,find:2,flow:0,free:0,from:[1,2,4],fromarrai:2,gaussian:[2,4],gaussian_nois:[2,4],gener:2,get_bits_img:4,get_lab:4,get_lab_a:4,get_lab_b:4,get_lab_l:[2,4],get_lab_l_svd:4,get_lab_l_svd_:[1,4],get_lab_l_svd_u:4,get_lab_l_svd_v:4,get_low_bits_img:4,get_svd:4,get_svd_:4,get_svd_u:4,get_svd_v:4,get_xyz:4,get_xyz_i:4,get_xyz_x:4,get_xyz_z:4,git:0,github:3,gray_to_mscn:4,grayscal:4,grei:4,has:4,have:[0,2],height:4,here:2,how:3,ident:4,imag:[1,2,4],image_heigt:4,image_natur:2,image_valu:4,image_width:4,img:[1,2,4],img_l:4,img_mscn:4,img_norm:4,img_path:2,impact:2,implement:0,increas:4,index:3,indic:4,inform:[2,4],input:4,instal:3,interv:4,ipfml:[1,2],its:4,jpg:2,just:[0,1],keep:4,kept:4,lab:[2,4],laplac:4,laplace_nois:4,law:4,len:4,list:4,log:4,log_normal_nois:4,low:[2,4],low_bits_grey_img:4,low_bits_img:[2,4],low_bits_lab_l_img:4,make:0,matrix:4,max:4,mean:4,metric:3,min:4,modul:[2,3],mscn:4,multipli:4,mut_white_nois:4,natur:2,nb_bit:4,need:4,nois:3,noisy_imag:[2,4],normal:4,normalize_2d_arr:4,normalize_arr:4,normalize_arr_with_rang:4,now:2,number:4,numpai:4,numpi:4,obtain:4,onli:[2,4],open:[1,2,4],option:4,other:2,otherwis:4,output:[2,4],own:0,packag:[1,2],page:3,paramet:4,part:4,path:[1,2],pepper:4,pictur:2,pil:[1,2,4],pip:1,pixel:4,png:[1,4],probabl:4,process:1,produc:4,project:[0,3],pull:0,python:3,rais:4,randint:4,random:4,reduc:4,repres:4,represent:4,request:0,reshap:4,result:2,rgb:4,rgb_to_grey_low_bit:[2,4],rgb_to_lab_l_bit:4,rgb_to_lab_l_low_bit:4,rgb_to_mscn:4,salt:4,salt_pepper_nois:4,search:3,set:[2,4],shape:4,show:2,simpli:1,singular:4,size:4,some:2,specifi:4,subtract:4,svd:[2,4],taken:4,test_img:4,thesi:3,thi:[0,2,4],transform:4,tupl:4,type:4,unexpect:4,uniform:4,usag:4,use:[2,3],used:4,uses:0,using:[1,2,4],valu:[2,4],valueerror:4,variabl:4,vector:4,which:4,white:4,white_nois:4,width:4,xyz:[2,4],you:[0,2],your:0},titles:["Contributing","Description","Examples","Image Processing For Machine Learning","Documentation"],titleterms:{For:3,Using:0,contribut:0,descript:1,document:4,exampl:2,filter:[2,4],github:0,how:1,imag:3,indic:3,instal:1,ipfml:[3,4],learn:3,machin:3,metric:[2,4],nois:[2,4],process:[2,3,4],tabl:3,use:1,what:3}})