import numpy as np from ipfml import processing def _global_noise_filter(image, n, generator, updator, identical=False, distribution_interval=(-0.5, 0.5), k=0.2): """White noise filter to apply on image Args: image: image used as input (2D or 3D image representation) n: used to set importance of noise [1, 999] generator: lambda function used to generate random numpy array with specific distribution updator: lambda function used to update pixel value identical: keep or not identical noise distribution for each canal if RGB Image (default False) distribution_interval: tuple which set the distribution interval of uniform distribution (default (-0.5, 0.5)) k: variable that specifies the amount of noise to be taken into account in the output image (default 0.2) Returns: 2D Numpy array with specified noise applied Example: >>> from ipfml.filters.noise import _global_noise_filter as gf >>> import numpy as np >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100)) >>> generator = lambda x: np.random.uniform(-0.5, 0.5, x) >>> updator = lambda x, n, k, noise: x + n * k * noise >>> noisy_image = gf(image, 10, generator, updator) >>> noisy_image.shape (100, 100) """ image_array = np.asarray(image) nb_chanel = 1 if image_array.ndim != 3: width, height = image_array.shape else: width, height, nb_chanel = image_array.shape a, b = distribution_interval nb_pixels = width * height if identical: noise_filter = generator(nb_pixels) # final output numpy array output_array = [] for chanel in range(0, nb_chanel): # getting flatten information from image and noise if nb_chanel == 3: image_array_flatten = image_array[:, :, chanel].reshape(nb_pixels) else: image_array_flatten = image_array.reshape(nb_pixels) # redefine noise if necessary if not identical: noise_filter = generator(nb_pixels) # compute new pixel value # n * k * white_noise_filter[i] noisy_image = np.asarray([ updator(image_array_flatten[i], n, k, noise_filter[i]) for i in range(0, nb_pixels) ]) # reshape and normalize new value noisy_image = noisy_image.reshape((width, height)) noisy_image = np.asarray(noisy_image, 'uint8') # in order to concatenae output array if nb_chanel == 3: noisy_image = noisy_image[:, :, np.newaxis] # append new chanel output_array.append(noisy_image) # concatenate RGB image if nb_chanel == 3: output_array = np.concatenate(output_array, axis=2) else: output_array = np.asarray(output_array).reshape(width, height) return output_array def white_noise(image, n, identical=False, distribution_interval=(-0.5, 0.5), k=0.2): """White noise filter to apply on image Args: image: image used as input (2D or 3D image representation) n: used to set importance of noise [1, 999] identical: keep or not identical noise distribution for each canal if RGB Image (default False) distribution_interval: set the distribution interval of normal law distribution (default (-0.5, 0.5)) k: variable that specifies the amount of noise to be taken into account in the output image (default 0.2) Returns: 2D Numpy array with white noise applied Example: >>> from ipfml.filters.noise import white_noise >>> import numpy as np >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100)) >>> noisy_image = white_noise(image, 10) >>> noisy_image.shape (100, 100) """ a, b = distribution_interval generator = lambda x: np.random.uniform(a, b, x) updator = lambda x, n, k, noise: x + n * k * noise return _global_noise_filter(image, n, generator, updator, identical, distribution_interval, k) def gaussian_noise(image, n, identical=False, distribution_interval=(0, 1), k=0.1): """Gaussian noise filter to apply on image Args: image: image used as input (2D or 3D image representation) n: used to set importance of noise [1, 999] identical: keep or not identical noise distribution for each canal if RGB Image (default False) distribution_interval: set the distribution interval of normal law distribution (default (0, 1)) k: variable that specifies the amount of noise to be taken into account in the output image (default 0.1) Returns: 2D Numpy array with gaussian noise applied Example: >>> from ipfml.filters.noise import gaussian_noise >>> import numpy as np >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100)) >>> noisy_image = gaussian_noise(image, 10) >>> noisy_image.shape (100, 100) """ a, b = distribution_interval generator = lambda x: np.random.normal(a, b, x) updator = lambda x, n, k, noise: x + n * k * noise return _global_noise_filter(image, n, generator, updator, identical, distribution_interval, k) def laplace_noise(image, n, identical=False, distribution_interval=(0, 1), k=0.1): """Laplace noise filter to apply on image Args: image: image used as input (2D or 3D image representation) n: used to set importance of noise [1, 999] identical: keep or not identical noise distribution for each canal if RGB Image (default False) distribution_interval: set the distribution interval of normal law distribution (default (0, 1)) k: variable that specifies the amount of noise to be taken into account in the output image (default 0.1) Returns: 2D Numpay array with Laplace noise applied Example: >>> from ipfml.filters.noise import laplace_noise >>> import numpy as np >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100)) >>> noisy_image = laplace_noise(image, 10) >>> noisy_image.shape (100, 100) """ a, b = distribution_interval generator = lambda x: np.random.laplace(a, b, x) updator = lambda x, n, k, noise: x + n * k * noise return _global_noise_filter(image, n, generator, updator, identical, distribution_interval, k) def cauchy_noise(image, n, identical=False, distribution_interval=(0, 1), k=0.0002): """Cauchy noise filter to apply on image Args: image: image used as input (2D or 3D image representation) n: used to set importance of noise [1, 999] identical: keep or not identical noise distribution for each canal if RGB Image (default False) distribution_interval: set the distribution interval of normal law distribution (default (0, 1)) k: variable that specifies the amount of noise to be taken into account in the output image (default 0.0002) Returns: 2D Numpy array with Cauchy noise applied Example: >>> from ipfml.filters.noise import cauchy_noise >>> import numpy as np >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100)) >>> noisy_image = cauchy_noise(image, 10) >>> noisy_image.shape (100, 100) """ a, b = distribution_interval generator = lambda x: np.random.standard_cauchy(x) updator = lambda x, n, k, noise: x + n * k * noise return _global_noise_filter(image, n, generator, updator, identical, distribution_interval, k) def log_normal_noise(image, n, identical=False, distribution_interval=(0, 1), k=0.05): """Log-normal noise filter to apply on image Args: image: image used as input (2D or 3D image representation) n: used to set importance of noise [1, 999] identical: keep or not identical noise distribution for each canal if RGB Image (default False) distribution_interval: set the distribution interval of normal law distribution (default (0, 1)) k: variable that specifies the amount of noise to be taken into account in the output image (default 0.05) Returns: 2D Numpy array with Log-normal noise applied Example: >>> from ipfml.filters.noise import log_normal_noise >>> import numpy as np >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100)) >>> noisy_image = log_normal_noise(image, 10) >>> noisy_image.shape (100, 100) """ a, b = distribution_interval generator = lambda x: np.random.lognormal(a, b, x) updator = lambda x, n, k, noise: x + n * k * noise return _global_noise_filter(image, n, generator, updator, identical, distribution_interval, k) def mut_white_noise(image, n, identical=False, distribution_interval=(-0.5, 0.5), k=0.2): """Multiplied White noise filter to apply on image Args: image: image used as input (2D or 3D image representation) n: used to set importance of noise [1, 999] identical: keep or not identical noise distribution for each canal if RGB Image (default False) distribution_interval: set the distribution interval of normal law distribution (default (-0.5, 0.5)) k: variable that specifies the amount of noise to be taken into account in the output image (default 0.2) Returns: 2D Numpy array with multiplied white noise applied Example: >>> from ipfml.filters.noise import mut_white_noise >>> import numpy as np >>> image = np.random.uniform(0, 255, 10000).reshape((100, 100)) >>> noisy_image = mut_white_noise(image, 10) >>> noisy_image.shape (100, 100) """ a, b = distribution_interval generator = lambda x: np.random.uniform(a, b, x) updator = lambda x, n, k, noise: x * n * k * noise return _global_noise_filter(image, n, generator, updator, identical, distribution_interval, k)