ipfml.utils¶
Utils functions of ipfml package (normalization, integral…)
Functions
get_entropy (arr) |
Returns the computed entropy from arr |
get_entropy_contribution_of_i (arr, i) |
Returns the entropy contribution i column |
get_entropy_without_i (arr, i) |
Returns the computed entropy from arr without contribution of i |
get_indices_of_highest_values (arr, n) |
Returns indices of n highest values from list or 1D numpy array |
get_indices_of_lowest_values (arr, n) |
Returns indices of n highest values from list or 1D numpy array |
integral_area_simps (y_values, dx) |
Returns area under curves from provided data points using Simpsons rule |
integral_area_trapz (y_values, dx) |
Returns area under curves from provided data points using Trapezium rule |
normalize_2D_arr (arr) |
Return array normalize from its min and max values |
normalize_arr (arr) |
Normalize data of 1D array shape |
normalize_arr_with_range (arr, min, max) |
Normalize data of 1D array shape |
-
ipfml.utils.
get_entropy
(arr)[source]¶ Returns the computed entropy from arr
Parameters: arr – numpy array Returns: entropy score computed Example:
>>> from ipfml import utils >>> import numpy as np >>> arr = np.arange(10) >>> entropy = utils.get_entropy(arr) >>> int(entropy) 0
-
ipfml.utils.
get_entropy_contribution_of_i
(arr, i)[source]¶ Returns the entropy contribution i column
Parameters: - arr – numpy array
- i – column index
Returns: entropy contribution score computed
Example:
>>> from ipfml import utils >>> import numpy as np >>> arr = np.arange(10) >>> entropy = utils.get_entropy_contribution_of_i(arr, 3) >>> int(entropy) 0
-
ipfml.utils.
get_entropy_without_i
(arr, i)[source]¶ Returns the computed entropy from arr without contribution of i
Parameters: - arr – numpy array
- i – column index
Returns: entropy score computed
Example:
>>> from ipfml import utils >>> import numpy as np >>> arr = np.arange(10) >>> entropy = utils.get_entropy_without_i(arr, 3) >>> int(entropy) 0
-
ipfml.utils.
get_indices_of_highest_values
(arr, n)[source]¶ Returns indices of n highest values from list or 1D numpy array
Parameters: - arr – List of numpy array
- n – number of highest elements wanted
Returns: n indices of highest values
Example:
>>> from ipfml import utils >>> import numpy as np >>> arr = np.arange(10) >>> indices = utils.get_indices_of_highest_values(arr, 2) >>> indices array([9, 8])
-
ipfml.utils.
get_indices_of_lowest_values
(arr, n)[source]¶ Returns indices of n highest values from list or 1D numpy array
Parameters: - arr – List of numpy array
- n – number of highest elements wanted
Returns: n indices of highest values
Example:
>>> from ipfml import utils >>> import numpy as np >>> arr = np.arange(10) >>> indices = utils.get_indices_of_lowest_values(arr, 2) >>> indices array([0, 1])
-
ipfml.utils.
integral_area_simps
(y_values, dx)[source]¶ Returns area under curves from provided data points using Simpsons rule
Parameters: - y_values – y values of curve
- dx – number of unit for x axis
Returns: Area under curves obtained from these points
Example:
>>> from ipfml import utils >>> import numpy as np >>> y_values = np.array([5, 20, 4, 18, 19, 18, 7, 4]) >>> area = utils.integral_area_simps(y_values, dx=5) >>> area 460.0
-
ipfml.utils.
integral_area_trapz
(y_values, dx)[source]¶ Returns area under curves from provided data points using Trapezium rule
Parameters: - y_values – y values of curve
- dx – number of unit for x axis
Returns: Area under curves obtained from these points
Example:
>>> from ipfml import utils >>> import numpy as np >>> y_values = np.array([5, 20, 4, 18, 19, 18, 7, 4]) >>> area = utils.integral_area_trapz(y_values, dx=5) >>> area 452.5
-
ipfml.utils.
normalize_2D_arr
(arr)[source]¶ Return array normalize from its min and max values
Parameters: arr – 2D Numpy array Returns: Normalized 2D Numpy array Example:
>>> from PIL import Image >>> from ipfml import utils >>> from ipfml.processing import transform >>> img = Image.open('./images/test_img.png') >>> img_mscn = transform.rgb_to_mscn(img) >>> img_normalized = utils.normalize_2D_arr(img_mscn) >>> img_normalized.shape (200, 200)
-
ipfml.utils.
normalize_arr
(arr)[source]¶ Normalize data of 1D array shape
Parameters: arr – array data of 1D shape Returns: Normalized 1D array Example:
>>> from ipfml import utils >>> import numpy as np >>> arr = np.arange(5) >>> arr_normalized = utils.normalize_arr(arr) >>> arr_normalized[1] 0.1
-
ipfml.utils.
normalize_arr_with_range
(arr, min, max)[source]¶ Normalize data of 1D array shape
Parameters: arr – array data of 1D shape Returns: Normalized 1D Numpy array Example:
>>> from ipfml import utils >>> import numpy as np >>> arr = np.arange(11) >>> arr_normalized = utils.normalize_arr_with_range(arr, 0, 20) >>> arr_normalized[1] 0.05