/* ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; File: edges.c ;;; Author: Eero Simoncelli ;;; Description: Boundary handling routines for use with convolve.c ;;; Creation Date: Spring 1987. ;;; MODIFIED, 6/96, to operate on double float arrays. ;;; MODIFIED by dgp, 4/1/97, to support THINK C. ;;; ---------------------------------------------------------------- ;;; Object-Based Vision and Image Understanding System (OBVIUS), ;;; Copyright 1988, Vision Science Group, Media Laboratory, ;;; Massachusetts Institute of Technology. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; */ /* This file contains functions which determine how edges are to be handled when performing convolutions of images with linear filters. Any edge handling function which is local and linear may be defined, except (unfortunately) constants cannot be added. So to treat the edges as if the image is surrounded by a gray field, you must paste it into a gray image, convolve, and crop it out... The main convolution function is called internal_filter and is defined in the file convolve.c. The idea is that the convolution function calls the edge handling function which computes a new filter based on the old filter and the distance to the edge of the image. For example, reflection is done by reflecting the filter through the appropriate axis and summing. Currently defined functions are listed below. */ /* #define DEBUG */ #include #include #include #include "convolve.h" #define sgn(a) ( ((a)>0)?1:(((a)<0)?-1:0) ) #define clip(a,mn,mx) ( ((a)<(mn))?(mn):(((a)>=(mx))?(mx-1):(a)) ) int reflect1(), reflect2(), repeat(), zero(), Extend(), nocompute(); int ereflect(), predict(); /* Lookup table matching a descriptive string to the edge-handling function */ #if !THINK_C static EDGE_HANDLER edge_foos[] = { { "dont-compute", nocompute }, /* zero output for filter touching edge */ { "zero", zero }, /* zero outside of image */ { "repeat", repeat }, /* repeat edge pixel */ { "reflect1", reflect1 }, /* reflect about edge pixels */ { "reflect2", reflect2 }, /* reflect image, including edge pixels */ { "extend", Extend }, /* extend (reflect & invert) */ { "predict", predict }, /* predict based on portion covered by filt */ { "ereflect", ereflect }, /* orthogonal QMF reflection */ }; #else /* This is really stupid, but THINK C won't allow initialization of static variables in a code resource with string addresses. So we do it this way. The 68K code for a MATLAB 4 MEX file can only be created by THINK C. However, for MATLAB 5, we'll be able to use Metrowerks CodeWarrior for both 68K and PPC, so this cludge can be dropped when we drop support for MATLAB 4. Denis Pelli, 4/1/97. */ static EDGE_HANDLER edge_foos[8]; void InitializeTable(EDGE_HANDLER edge_foos[]) { static int i=0; if(i>0) return; edge_foos[i].name="dont-compute"; edge_foos[i++].func=nocompute; edge_foos[i].name="zero"; edge_foos[i++].func=zero; edge_foos[i].name="repeat"; edge_foos[i++].func=repeat; edge_foos[i].name="reflect1"; edge_foos[i++].func=reflect1; edge_foos[i].name="reflect2"; edge_foos[i++].func=reflect2; edge_foos[i].name="extend"; edge_foos[i++].func=Extend; edge_foos[i].name="predict"; edge_foos[i++].func=predict; edge_foos[i].name="ereflect"; edge_foos[i++].func=ereflect; } #endif /* Function looks up an edge handler id string in the structure above, and returns the associated function */ fptr edge_function(char *edges) { int i; #if THINK_C InitializeTable(edge_foos); #endif for (i = 0; i1) OR (x_pos<-1) OR (y_pos>1) OR (y_pos<-1) ) for (i=0; i0)?(x_pos-1):((x_pos<0)?(x_pos+1):0)); int y_start = x_dim * ((y_pos>0)?(y_pos-1):((y_pos<0)?(y_pos+1):0)); int i; for (i=0; i= 0) AND (y_res < filt_sz)) for (x_filt=y_filt, x_res=x_start; x_filt= 0) AND (x_res < x_dim)) result[y_res+x_res] = filt[x_filt]; return(0); } /* -------------------------------------------------------------------- repeat() - repeat edge pixel. Continuous, but content is usually different from image. */ int repeat(filt,x_dim,y_dim,x_pos,y_pos,result,f_or_e) register double *filt, *result; register int x_dim; int y_dim, x_pos, y_pos, f_or_e; { register int y_filt,x_filt, y_res,x_res; int filt_sz = x_dim*y_dim; int x_start = ((x_pos>0)?(x_pos-1):((x_pos<0)?(x_pos+1):0)); int y_start = x_dim * ((y_pos>0)?(y_pos-1):((y_pos<0)?(y_pos+1):0)); int i; for (i=0; i=0)?((y_res=0)?((x_res0)?(x_dim-1):0; register int y_base = (y_pos>0)?(x_dim*(y_dim-1)):0; int filt_sz = x_dim*y_dim; int x_edge_dist = (x_pos>0)?(x_pos-x_dim-1):(x_pos+1); int y_edge_dist = x_dim * ((y_pos>0)?(y_pos-y_dim-1):(y_pos+1)); int i; #ifdef DEBUG printf("(%d,%d) ",y_pos,x_pos); if (x_pos==0) printf("\n"); #endif for (i=0; i0)?(x_dim-1):0; register int y_base = (y_pos>0)?(x_dim*(y_dim-1)):0; int x_edge_dist = (x_pos>0)?(x_pos-x_dim):((x_pos<0)?(x_pos+1):0); int y_edge_dist = x_dim * ((y_pos>0)?(y_pos-y_dim):((y_pos<0)?(y_pos+1):0)); int i; int mx_pos = (x_dim/2)+1; int my_pos = (y_dim/2)+1; #ifdef DEBUG printf("(%d,%d) ",y_pos,x_pos); if (x_pos==0) printf("\n"); #endif for (i=0; i0)?(x_dim-1):0; register int y_base = (y_pos>0)?(x_dim*(y_dim-1)):0; int x_edge_dist = (x_pos>0)?(x_pos-x_dim):((x_pos<-1)?(x_pos+1):0); int y_edge_dist = x_dim * ((y_pos>0)?(y_pos-y_dim):((y_pos<-1)?(y_pos+1):0)); int i; int mx_pos = (x_dim/2)+1; int my_pos = (y_dim/2)+1; for (i=0; i0)?(x_pos-1):((x_pos<0)?(x_pos+1):0)); int y_start = x_dim * ((y_pos>0)?(y_pos-1):((y_pos<0)?(y_pos+1):0)); int i; for (i=0; i= 0) AND (y_res < filt_sz)) for (x_filt=y_filt, x_res=x_start; x_filt= 0) AND (x_res < x_dim)) { result[y_res+x_res] = filt[x_filt]; taps_used += ABS(filt[x_filt]); } printf("TU: %f\n",taps_used); if (f_or_e IS FILTER) { /* fraction = ( (double) filt_sz ) / ( (double) taps_used ); */ for (i=0; i0)?(x_dim-1):0; register int y_base = x_dim * ( (y_pos>0)?(y_dim-1):0 ); int filt_sz = x_dim*y_dim; int x_edge_dist = (x_pos>1)?(x_pos-x_dim):((x_pos<-1)?(x_pos+1):0); int y_edge_dist = x_dim * ( (y_pos>1)?(y_pos-y_dim):((y_pos<-1)?(y_pos+1):0) ); int i; double norm,onorm; for (i=0; i