% [PYR, INDICES, STEERMTX, HARMONICS] = buildSCFpyr(IM, HEIGHT, ORDER, TWIDTH) % % This is a modified version of buildSFpyr, that constructs a % complex-valued steerable pyramid using Hilbert-transform pairs % of filters. Note that the imaginary parts will *not* be steerable. % % To reconstruct from this representation, either call reconSFpyr % on the real part of the pyramid, *or* call reconSCFpyr which will % use both real and imaginary parts (forcing analyticity). % % Description of this transform appears in: Portilla & Simoncelli, % Int'l Journal of Computer Vision, 40(1):49-71, Oct 2000. % Further information: http://www.cns.nyu.edu/~eero/STEERPYR/ % Original code: Eero Simoncelli, 5/97. % Modified by Javier Portilla to return complex (quadrature pair) channels, % 9/97. function [pyr,pind,steermtx,harmonics] = buildSCFpyr(im, ht, order, twidth) %----------------------------------------------------------------- %% DEFAULTS: max_ht = floor(log2(min(size(im)))) - 2; if (exist('ht') ~= 1) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end if (exist('order') ~= 1) order = 3; elseif ((order > 15) | (order < 0)) fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n'); order = min(max(order,0),15); else order = round(order); end nbands = order+1; if (exist('twidth') ~= 1) twidth = 1; elseif (twidth <= 0) fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n'); twidth = 1; end %----------------------------------------------------------------- %% Steering stuff: if (mod((nbands),2) == 0) harmonics = [0:(nbands/2)-1]'*2 + 1; else harmonics = [0:(nbands-1)/2]'*2; end steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even'); %----------------------------------------------------------------- dims = size(im); ctr = ceil((dims+0.5)/2); [xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ... ([1:dims(1)]-ctr(1))./(dims(1)/2) ); angle = atan2(yramp,xramp); log_rad = sqrt(xramp.^2 + yramp.^2); log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1); log_rad = log2(log_rad); %% Radial transition function (a raised cosine in log-frequency): [Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]); Yrcos = sqrt(Yrcos); YIrcos = sqrt(1.0 - Yrcos.^2); lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); imdft = fftshift(fft2(im)); lo0dft = imdft .* lo0mask; [pyr,pind] = buildSCFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands); hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); hi0dft = imdft .* hi0mask; hi0 = ifft2(ifftshift(hi0dft)); pyr = [real(hi0(:)) ; pyr]; pind = [size(hi0); pind];