#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rawls.h" struct Point { unsigned x; unsigned y; }; struct Tile { Point p1; Point p2; }; std::vector split(const std::string& s, char delimiter) { std::vector tokens; std::string token; std::istringstream tokenStream(s); while (std::getline(tokenStream, token, delimiter)) { tokens.push_back(token); } return tokens; } void writeProgress(float progress, bool moveUp = false){ int barWidth = 150; if (moveUp){ // move up line std::cout << "\e[A"; std::cout.flush(); } std::cout << "["; int pos = barWidth * progress; for (int i = 0; i < barWidth; ++i) { if (i < pos) std::cout << "="; else if (i == pos) std::cout << ">"; else std::cout << " "; } std::cout << "] " << int(progress * 100.0) << " %\r"; std::cout.flush(); } float getMedian(std::vector &values) { std::sort(values.begin(), values.end()); unsigned size = values.size(); if (size % 2 == 0) { return (values[size / 2 - 1] + values[size / 2]) / 2; } else { return values[size / 2]; } } float getVariance(float &mean, std::vector &values){ // Now calculate the variance auto variance_func = [&mean](float accumulator, const float& val) { return accumulator + pow(val - mean, 2); }; return std::accumulate(values.begin(), values.end(), 0.0, variance_func) / values.size(); } float getSkewness(float &mean, float &std, std::vector &values) { unsigned size = values.size(); // Now calculate the sum of pow 3 auto order3_func = [&mean, &std](float accumulator, const float& val) { return accumulator + pow((val - mean) / std, 3); }; float order3 = std::accumulate(values.begin(), values.end(), 0.0, order3_func); return order3 / size; } float getKurtosis(float &mean, float &std, std::vector &values){ unsigned size = values.size(); // Now calculate the sum of pow 4 auto order4_func = [&mean, &std](float accumulator, const float& val) { return accumulator + pow((val - mean) / std, 4); }; float order4 = std::accumulate(values.begin(), values.end(), 0.0, order4_func); return order4 / size; } float getMode(std::vector &values) { std::vector pvalues; for (unsigned i = 0; i < values.size(); i++){ pvalues.push_back(roundf(values.at(i) * 100) / 100.0); } typedef std::map CounterMap; CounterMap counts; for (int i = 0; i < pvalues.size(); ++i) { CounterMap::iterator it(counts.find(pvalues[i])); if (it != counts.end()){ it->second++; } else { counts[pvalues[i]] = 1; } } // Create a map iterator and point to beginning of map std::map::iterator it = counts.begin(); unsigned noccurences = 0; float modeValue = 0.; // Iterate over the map using Iterator till end. while (it != counts.end()) { // Accessing KEY from element pointed by it. float potentialMode = it->first; // Accessing VALUE from element pointed by it. unsigned count = it->second; if (count > noccurences) { noccurences = count; modeValue = potentialMode; } // Increment the Iterator to point to next entry it++; } return modeValue; } // float getEstimator(std::string estimator, std::vector values) { // // another version of scripts in order to quick compute data // if (estimator == "median") { // std::sort(values.begin(), values.end()); // unsigned size = values.size(); // if (size % 2 == 0) // { // return (values[size / 2 - 1] + values[size / 2]) / 2; // } // else // { // return values[size / 2]; // } // } else if (estimator == "mean") { // return std::accumulate(values.begin(), values.end(), 0.0) / values.size(); // } else if (estimator == "var") { // // Calculate the mean // const float mean = std::accumulate(values.begin(), values.end(), 0.0) / values.size(); // // Now calculate the variance // auto variance_func = [&mean](float accumulator, const float& val) { // return accumulator + pow(val - mean, 2); // }; // return std::accumulate(values.begin(), values.end(), 0.0, variance_func) / values.size(); // } else if (estimator == "std") { // return sqrt(getEstimator("var", values)); // } else if (estimator == "skewness") { // unsigned size = values.size(); // float mean = getEstimator("mean", values); // float std = getEstimator("std", values); // // Now calculate the sum of pow 3 // auto order3_func = [&mean, &std](float accumulator, const float& val) { // return accumulator + pow((val - mean) / std, 3); // }; // float order3 = std::accumulate(values.begin(), values.end(), 0.0, order3_func); // return order3 / size; // } else if (estimator == "kurtosis") { // unsigned size = values.size(); // float mean = getEstimator("mean", values); // float std = getEstimator("std", values); // // Now calculate the sum of pow 4 // auto order4_func = [&mean, &std](float accumulator, const float& val) { // return accumulator + pow((val - mean) / std, 4); // }; // float order4 = std::accumulate(values.begin(), values.end(), 0.0, order4_func); // return order4 / size; // } else if (estimator == "mode") { // std::vector pvalues; // for (unsigned i = 0; i < values.size(); i++){ // pvalues.push_back(roundf(values.at(i) * 100) / 100.0); // } // typedef std::map CounterMap; // CounterMap counts; // for (int i = 0; i < pvalues.size(); ++i) // { // CounterMap::iterator it(counts.find(pvalues[i])); // if (it != counts.end()){ // it->second++; // } else { // counts[pvalues[i]] = 1; // } // } // // Create a map iterator and point to beginning of map // std::map::iterator it = counts.begin(); // unsigned noccurences = 0; // float modeValue = 0.; // // Iterate over the map using Iterator till end. // while (it != counts.end()) // { // // Accessing KEY from element pointed by it. // float potentialMode = it->first; // // Accessing VALUE from element pointed by it. // unsigned count = it->second; // if (count > noccurences) { // noccurences = count; // modeValue = potentialMode; // } // // Increment the Iterator to point to next entry // it++; // } // return modeValue; // } // // by default // return 0.; // } int main(int argc, char *argv[]){ std::string folderName; std::vector estimators = {"mean", "median", "var", "std", "skewness", "kurtosis", "mode"}; unsigned blockHeight; unsigned blockWidth; unsigned nfiles = 10000; std::string outputFolder; for (int i = 1; i < argc; ++i) { if (!strcmp(argv[i], "--folder") || !strcmp(argv[i], "-folder")) { folderName = argv[++i]; } else if (!strcmp(argv[i], "--bwidth") || !strcmp(argv[i], "-bwidth")) { blockHeight = atoi(argv[++i]); } else if (!strcmp(argv[i], "--bheight") || !strcmp(argv[i], "-bheight")) { blockWidth = atoi(argv[++i]); } else if (!strcmp(argv[i], "--output") || !strcmp(argv[i], "-output")) { outputFolder = argv[++i]; } else if (!strcmp(argv[i], "--nfiles") || !strcmp(argv[i], "-nfiles")) { nfiles = atoi(argv[++i]); } } // create outputs directory mkdir(outputFolder.c_str(), 0755); auto elements = split(folderName, '/'); std::string sceneName = elements.at(elements.size() - 1); for (int i = 0; i < estimators.size(); i++) { mkdir((outputFolder + "/" + estimators[i]).c_str(), 0755); mkdir((outputFolder + "/" + estimators[i] + "/" + sceneName).c_str(), 0755); } // get all files path std::vector imagesPath; for (const auto & entry : std::filesystem::directory_iterator(folderName)){ std::string imageName = entry.path().string(); if (rawls::HasExtension(imageName, ".rawls") || rawls::HasExtension(imageName, ".rawls_20")){ imagesPath.push_back(imageName); } } if (imagesPath.size() != nfiles) { return 0; } std::sort(imagesPath.begin(), imagesPath.end()); std::tuple data = rawls::getDimensionsRAWLS(imagesPath.at(0)); unsigned outputWidth = std::get<0>(data); unsigned outputHeight = std::get<1>(data); unsigned nbChanels = std::get<2>(data); std::vector outputBuffers; std::vector outputFiles; std::vector selectedEstimators; // new buffer size as new output buffer image (default 3 channels) for (int i = 0; i < estimators.size(); i++) { std::string outputFile = outputFolder + "/" + estimators[i] + "/" + sceneName + "/" + sceneName + ".rawls"; std::ifstream ifile; ifile.open(outputFile); if(!ifile) { // create new buffer entry selectedEstimators.push_back(estimators[i]); outputFiles.push_back(outputFile); outputBuffers.push_back(new float[outputHeight * outputWidth * nbChanels]); } else { ifile.close(); } } // get all tiles to apply unsigned nWidth = ceil(outputWidth / (float)blockWidth); unsigned nHeight = ceil(outputHeight / (float)blockHeight); std::vector tiles; for (unsigned i = 0; i < nWidth; i++) { for (unsigned j = 0; j < nHeight; j++) { unsigned x1 = i * blockWidth; unsigned y1 = j * blockHeight; unsigned x2 = i * blockWidth + blockWidth; unsigned y2 = j * blockHeight + blockHeight; x2 = x2 > outputWidth ? outputWidth: x2; y2 = y2 > outputHeight ? outputHeight: y2; Point p1 = {x1, y1}; Point p2 = {x2, y2}; Tile tile = {p1, p2}; tiles.push_back(tile); } } unsigned nsamples = imagesPath.size(); unsigned nloop = tiles.size() * nsamples; unsigned nloopCounter = 0; for (unsigned t_index = 0; t_index < tiles.size(); t_index++){ Tile tile = tiles.at(t_index); //std::cout << "Tile: (" << tile.p1.x << ", " << tile.p1.y << ")" << " => " << "(" << tile.p2.x << ", " << tile.p2.y << ")" << std::endl; unsigned nvalues = (tile.p2.x - tile.p1.x) * (tile.p2.y - tile.p1.y) * 3; std::vector> rgbValues(nvalues); for (unsigned i = 0; i < nsamples; i++) { try { float* RGBpixels = rawls::getPixelsRAWLS(imagesPath.at(i)); std::cout << "Read image n°" << i << " / " << nsamples << " for tile n°" << t_index << " / " << tiles.size() << std::endl; unsigned index = 0; for (int y = tile.p1.y; y < tile.p2.y; ++y) { for (int x = tile.p1.x; x < tile.p2.x; ++x) { rgbValues.at(index).push_back(RGBpixels[3 * (y * outputWidth + x) + 0]); rgbValues.at(index + 1).push_back(RGBpixels[3 * (y * outputWidth + x) + 1]); rgbValues.at(index + 2).push_back(RGBpixels[3 * (y * outputWidth + x) + 2]); index += 3; } } delete RGBpixels; } catch(std::exception& e){ std::cout << "Error occurs when reading file" << std::endl; } // display progress nloopCounter += 1; writeProgress(nloopCounter / (float)nloop); } // for (int i = 0; i < outputFiles.size(); i++) { // extract stat and add predicted value into output buffer unsigned index = 0; for (int y = tile.p1.y; y < tile.p2.y; ++y) { for (int x = tile.p1.x; x < tile.p2.x; ++x) { // Here we will compute each estimator in specific order // => {"median", "var", "std", "skewness", "kurtosis", "mode"} auto rvalues = rgbValues.at(index + 0); auto gvalues = rgbValues.at(index + 1); auto bvalues = rgbValues.at(index + 2); // Index [0] : MEAN float rmean = std::accumulate(rvalues.begin(), rvalues.end(), 0.0) / rvalues.size(); float gmean = std::accumulate(gvalues.begin(), gvalues.end(), 0.0) / gvalues.size(); float bmean = std::accumulate(bvalues.begin(), bvalues.end(), 0.0) / bvalues.size(); outputBuffers.at(0)[3 * (y * outputWidth + x) + 0] = rmean; outputBuffers.at(0)[3 * (y * outputWidth + x) + 1] = gmean; outputBuffers.at(0)[3 * (y * outputWidth + x) + 2] = bmean; // Index [1] : MEDIAN float rmedian = getMedian(rvalues); float gmedian = getMedian(gvalues); float bmedian = getMedian(bvalues); outputBuffers.at(1)[3 * (y * outputWidth + x) + 0] = rmedian; outputBuffers.at(1)[3 * (y * outputWidth + x) + 1] = gmedian; outputBuffers.at(1)[3 * (y * outputWidth + x) + 2] = bmedian; // Index [2] : VARIANCE float rvariance = getVariance(rmean, rvalues); float gvariance = getVariance(gmean, gvalues); float bvariance = getVariance(bmean, bvalues); outputBuffers.at(2)[3 * (y * outputWidth + x) + 0] = rvariance; outputBuffers.at(2)[3 * (y * outputWidth + x) + 1] = gvariance; outputBuffers.at(2)[3 * (y * outputWidth + x) + 2] = bvariance; // Index [3] : STD float rstd = sqrt(rvariance); float gstd = sqrt(gvariance); float bstd = sqrt(bvariance); outputBuffers.at(3)[3 * (y * outputWidth + x) + 0] = rstd; outputBuffers.at(3)[3 * (y * outputWidth + x) + 1] = gstd; outputBuffers.at(3)[3 * (y * outputWidth + x) + 2] = bstd; // Index [4] : SKEWNESS float rskew = getSkewness(rmean, rstd, rvalues); float gskew = getSkewness(gmean, gstd, gvalues); float bskew = getSkewness(bmean, bstd, bvalues); outputBuffers.at(4)[3 * (y * outputWidth + x) + 0] = rskew; outputBuffers.at(4)[3 * (y * outputWidth + x) + 1] = gskew; outputBuffers.at(4)[3 * (y * outputWidth + x) + 2] = bskew; // Index [5] : KURTOSIS float rkurtosis = getKurtosis(rmean, rstd, rvalues); float gkurtosis = getKurtosis(gmean, gstd, gvalues); float bkurtosis = getKurtosis(bmean, bstd, bvalues); outputBuffers.at(5)[3 * (y * outputWidth + x) + 0] = rkurtosis; outputBuffers.at(5)[3 * (y * outputWidth + x) + 1] = gkurtosis; outputBuffers.at(5)[3 * (y * outputWidth + x) + 2] = bkurtosis; // Index [6] : MODE (TODO: check computation time and if very necessary) float rmode = getMode(rvalues); float gmode = getMode(gvalues); float bmode = getMode(bvalues); outputBuffers.at(6)[3 * (y * outputWidth + x) + 0] = rmode; outputBuffers.at(6)[3 * (y * outputWidth + x) + 1] = gmode; outputBuffers.at(6)[3 * (y * outputWidth + x) + 2] = bmode; index += 3; } } // } } // Save here new rawls image std::string comments = rawls::getCommentsRAWLS(imagesPath.at(0)); for (int i = 0; i < outputFiles.size(); i++) { // construct specific outfile name bool success = rawls::saveAsRAWLS(outputWidth, outputHeight, nbChanels, comments, outputBuffers[i], outputFiles[i]); if (success) { std::cout << "New image saved into " << outputFiles[i] << std::endl; } else { std::cout << "Error while saving current image " << outputFiles[i] << std::endl; } delete outputBuffers[i]; } }