Przeglądaj źródła

n'importe quoi !

remi.cozot 4 lat temu
rodzic
commit
a0a69974e3

+ 23 - 0
_miamG.sln

@@ -0,0 +1,23 @@
+
+Microsoft Visual Studio Solution File, Format Version 12.00
+# Visual Studio Version 16
+VisualStudioVersion = 16.0.30225.117
+MinimumVisualStudioVersion = 10.0.40219.1
+Project("{888888A0-9F3D-457C-B088-3A5042F75D52}") = "_miamG", "_miamG\_miamG.pyproj", "{156F72A0-BC74-4A1A-8A40-79478A7DFDAC}"
+EndProject
+Global
+	GlobalSection(SolutionConfigurationPlatforms) = preSolution
+		Debug|Any CPU = Debug|Any CPU
+		Release|Any CPU = Release|Any CPU
+	EndGlobalSection
+	GlobalSection(ProjectConfigurationPlatforms) = postSolution
+		{156F72A0-BC74-4A1A-8A40-79478A7DFDAC}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
+		{156F72A0-BC74-4A1A-8A40-79478A7DFDAC}.Release|Any CPU.ActiveCfg = Release|Any CPU
+	EndGlobalSection
+	GlobalSection(SolutionProperties) = preSolution
+		HideSolutionNode = FALSE
+	EndGlobalSection
+	GlobalSection(ExtensibilityGlobals) = postSolution
+		SolutionGuid = {7F0C3ED6-8546-4D7E-8E2D-C24B1095349B}
+	EndGlobalSection
+EndGlobal

+ 1 - 0
_miamG/_miamG.py

@@ -0,0 +1 @@
+

+ 46 - 0
_miamG/_miamG.pyproj

@@ -0,0 +1,46 @@
+<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003" ToolsVersion="4.0">
+  <PropertyGroup>
+    <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
+    <SchemaVersion>2.0</SchemaVersion>
+    <ProjectGuid>156f72a0-bc74-4a1a-8a40-79478a7dfdac</ProjectGuid>
+    <ProjectHome>.</ProjectHome>
+    <StartupFile>_miamG.py</StartupFile>
+    <SearchPath>
+    </SearchPath>
+    <WorkingDirectory>.</WorkingDirectory>
+    <OutputPath>.</OutputPath>
+    <Name>_miamG</Name>
+    <RootNamespace>_miamG</RootNamespace>
+  </PropertyGroup>
+  <PropertyGroup Condition=" '$(Configuration)' == 'Debug' ">
+    <DebugSymbols>true</DebugSymbols>
+    <EnableUnmanagedDebugging>false</EnableUnmanagedDebugging>
+  </PropertyGroup>
+  <PropertyGroup Condition=" '$(Configuration)' == 'Release' ">
+    <DebugSymbols>true</DebugSymbols>
+    <EnableUnmanagedDebugging>false</EnableUnmanagedDebugging>
+  </PropertyGroup>
+  <ItemGroup>
+    <Compile Include="miam\image\Image.py" />
+    <Compile Include="miam\image\__init__.py">
+      <SubType>Code</SubType>
+    </Compile>
+    <Compile Include="miam\__init__.py">
+      <SubType>Code</SubType>
+    </Compile>
+    <Compile Include="_miamG.py" />
+  </ItemGroup>
+  <ItemGroup>
+    <Folder Include="miam\" />
+    <Folder Include="miam\image\" />
+  </ItemGroup>
+  <Import Project="$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v$(VisualStudioVersion)\Python Tools\Microsoft.PythonTools.targets" />
+  <!-- Uncomment the CoreCompile target to enable the Build command in
+       Visual Studio and specify your pre- and post-build commands in
+       the BeforeBuild and AfterBuild targets below. -->
+  <!--<Target Name="CoreCompile" />-->
+  <Target Name="BeforeBuild">
+  </Target>
+  <Target Name="AfterBuild">
+  </Target>
+</Project>

+ 1 - 0
_miamG/miam/__init__.py

@@ -0,0 +1 @@
+

+ 542 - 0
_miamG/miam/image/Image.py

@@ -0,0 +1,542 @@
+# import
+# ------------------------------------------------------------------------------------------
+from . import Exif, ColorSpace, imageType, channel
+import miam.processing.TMO_CCTF
+import miam.processing.ColorSpaceTransform as MCST
+import rawpy, colour, os, skimage.transform, copy
+import numpy as np
+import json
+import matplotlib.pyplot as plt
+# ------------------------------------------------------------------------------------------
+# MIAM project 2020
+# ------------------------------------------------------------------------------------------
+# author: remi.cozot@univ-littoral.fr
+# ------------------------------------------------------------------------------------------
+
+class Image(object):
+    """ 
+    class image:
+        attribute(s):
+            name: image file name (str)
+            colorData:  array of pixels (np.ndarray)
+            type: type of image (image.imageType)
+            linear: image encoding is linear (boolean)
+            colorSpace: colorspace (colour.models.RGB_COLOURSPACES)
+            scalingFactor: scaling factor to [0..1] space (float)                      
+    """
+
+    def __init__(self, colorData, name, type, linear, colorspace, scalingFactor):
+        """ constructor """
+
+        self.name           = name
+        self.colorData      = colorData
+        self.shape          = self.colorData.shape
+        self.type           = type
+        self.linear         = linear
+        self.colorSpace     = colorspace
+        self.scalingFactor  = scalingFactor
+
+        # ----------------------------------------------------
+        # update May 2020
+        # ----------------------------------------------------
+        # mask mask shape is image shape with only one channel 
+        self.mask           = None  
+        # ----------------------------------------------------
+        # ----------------------------------------------------
+
+
+    def isHDR(self): return self.type == imageType.imageType.HDR
+
+    def __repr__(self):
+
+        res =   " Image{ name:"                 + self.name                     + "\n"  + \
+                "         shape: "              + str(self.shape)               + "\n"  + \
+                "         type: "               + str(self.type)                + "\n"  + \
+                "         color space: "        + self.colorSpace.__repr__()    + "\n"  + \
+                "         linear: "             + str(self.linear)              + "\n"  + \
+                "         scaling factor: "     + str(self.scalingFactor)       + "\n }"  
+        return res
+
+    def __str__(self) : 
+
+        res =   " Image{ name:"                 + self.name                     + "\n"  + \
+                "         shape: "              + str(self.shape)               + "\n"  + \
+                "         type: "               + str(self.type)                + "\n"  + \
+                "         color space: "        + self.colorSpace.name          + "\n"  + \
+                "         linear: "             + str(self.linear)              + "\n"  + \
+                "         scaling factor: "     + str(self.scalingFactor)       + "\n }"  
+        return res
+
+    def writeImage(self, filename):
+        """
+        Write Image: two output files are generated: filename+".json" contains additional data, filename+".jpg|hdr" contains colorData
+        @params:
+            filename   - Required  : filename WITHOUT extension [for example "../images/image00"] (Str)
+        """
+        # outfile depend on image type
+        ext, bitDepth = None, None
+        if self.type == imageType.imageType.SDR:
+            ext, bitDepth = "jpg", "uint8"
+        elif self.type == imageType.imageType.HDR:
+            ext, bitDepth = "hdr", "float32"
+        else:
+            print("WARNING[miam.image.Image.writeImage(",filename,"):: writing RAW image not yet supported!]")
+
+        (fpath, fname) = os.path.split(filename)
+        output = {  'name':         self.name,
+                    'filename':     fname+"."+ext,
+                    'shape':        str(self.shape),
+                    'type':         str(self.type),
+                    'colorspace':   self.colorSpace.name,
+                    'linear':       str(self.linear),
+                    'scaling':      str(self.scalingFactor) 
+                  }
+        with open(filename+".json", 'w') as outfile:
+            json.dump(output, outfile, indent=4)
+
+        colour.write_image(self.colorData, 
+                           filename+"."+ext,
+                           bit_depth=bitDepth, 
+                           method='Imageio')
+
+    def getChannelVector(self, channel):
+        """ get channel vector: works only for sR|sG|sB, X|Y|Z and L|a|b """
+
+        # take into account colorSpace
+        destColor = channel.colorSpace()
+        image = MCST.ColorSpaceTransform().compute(self,dest=destColor)
+
+        if channel.getValue() <3:
+            imgVector = Image.array2vector(image.colorData)
+            return imgVector[:,channel.getValue()]
+        else:
+            return None
+
+    def getChannel(self, channel):
+        """ get channel : works only for sR|sG|sB, X|Y|Z and L|a|b """
+
+        # take into account colorSpace
+        destColor = channel.colorSpace()
+        image = MCST.ColorSpaceTransform().compute(self,dest=destColor)
+
+        if channel.getValue() <3:
+            return image.colorData[:,:,channel.getValue()]
+        else:
+            return None
+
+    def getMinMaxPerChannel(self):
+
+        img = self.colorData
+        R, G, B = img[:,:,0], img[:,:,1], img[:,:,2]
+
+        minR, minG, minB = np.amin(R), np.amin(G), np.amin(B)
+        maxR, maxG, maxB = np.amax(R), np.amax(G), np.amax(B)
+
+        return ((minR,maxR),(minG,maxG),(minB,maxB))
+
+    def getDynamicRange(self, percentile = None, mode=None):
+        """ return dynamic range of image
+          @params:
+            percentile  - Optional  : percentile if None: just remove zero values   (Float)
+            mode        - Optional  : "maxmin" (default)| "f-stops"                 (Str)      
+        """
+
+        Y_min,Y_max = None, None
+
+        Y = self.getChannelVector(channel.channel.Y)
+
+        if percentile == None :
+            # remove zeros
+            Y = vY[vY>0]
+            # use min and max
+            Y_min = np.amin(Y)
+            Y_max = np.amax(Y)
+        else:
+            Y_min = np.percentile(Y,percentile)
+            Y_max = np.percentile(Y,100-percentile)
+
+        # take mode into account
+        if not mode: mode = 'maxmin'
+
+        if mode == "f-stops":
+            return np.log2(Y_max)-np.log2(Y_min)
+
+        if mode=="maxmin":
+            return (Y_max,Y_min)
+
+    # functionnal methods
+    def removeZeros(self, minPencitile=None):
+
+        # copy gimage
+        res = copy.deepcopy(self)
+        img = res.colorData        
+        
+        # get channels
+        R, G, B = img[:,:,0], img[:,:,1], img[:,:,2]
+
+        # remove zero value per channel
+        notZeroR, notZeroG, notZeroB = R[R>0], G[G>0],B[B>0]
+
+        if minPencitile==None:
+            # take none zero min of channels
+            Rmin, Gmin, Bmin = np.amin(notZeroR), np.amin(notZeroG), np.amin(notZeroB)
+
+            # replace zero values by min (per channel)
+            R[R==0] = Rmin 
+            G[G==0] = Gmin 
+            B[B==0] = Bmin
+        else:
+            # replace zeros by min Pecentile
+            Rmin = np.percentile(R,minPencitile)
+            Gmin = np.percentile(G,minPencitile)
+            Bmin = np.percentile(B,minPencitile)
+
+            R[R<Rmin] = Rmin
+            G[G<Gmin] = Gmin
+            B[B<Bmin] = Bmin
+
+        # combine channels
+        img[:,:,0], img[:,:,1], img[:,:,2] = R, G, B
+        res.colorData = img
+
+        return res
+
+    def clip(self, min=0.0, max=1.0):
+        res = copy.deepcopy(self)
+        res.colorData[res.colorData>max] = max
+        res.colorData[res.colorData<min] = min
+        return res
+
+    def smartResize(self,maxSize=400,anti_aliasing=False):
+        res = copy.deepcopy(self)
+        x, y, c =  tuple(res.colorData.shape)
+        maxImage = max(x,y)
+        factor = maxImage/maxSize if maxImage > maxSize else 1
+        res.colorData = skimage.transform.resize(res.colorData, (x // factor, y // factor), anti_aliasing)
+        res.shape = res.colorData.shape
+        return res
+
+    def resize(self,size=(None,None),anti_aliasing=False):
+        res = copy.deepcopy(self)
+        x, y, c =  tuple(res.colorData.shape)
+        ny,nx = size
+        if nx and (not ny): 
+            factor = nx/x
+            res.colorData = skimage.transform.resize(res.colorData, (nx, int(y * factor)), anti_aliasing)
+            res.shape = res.colorData.shape
+        elif (not nx) and ny:
+            factor = ny/y
+            res.colorData = skimage.transform.resize(res.colorData, (int(x * factor),ny), anti_aliasing)
+            res.shape = res.colorData.shape
+        elif nx and ny:
+            res.colorData = skimage.transform.resize(res.colorData, (nx,ny), anti_aliasing)
+            res.shape = res.colorData.shape
+        return res
+
+    def process(self, process, **kwargs):
+        """ process image: 
+            (Object) process must have compute(image, **kwargs) method
+            **kwargs optionnal parameters packed as dict
+        """
+        return process.compute(self,**kwargs)
+    
+    def buildMaskByValue(self, channel, min, max, zero = 0, one=1):
+
+        # convert into channel color space
+        ch = MCST.ColorSpaceTransform().compute(self,dest=channel.colorSpace()).colorData[:,:,channel.getValue()]
+
+        # mask
+        ch[ch<=min] = zero
+        ch[ch>=max] = zero
+        ch[ch!=zero] = one
+
+        res = Image.newImage(self.shape, colorSpaceName='sRGB',name='mask')
+        res = copy.deepcopy(self)
+        res.colorData[:,:,0] = ch
+        res.colorData[:,:,1] = ch
+        res.colorData[:,:,2] = ch
+
+        return res
+
+    # ----------------------------------------------------
+    # update May 2020
+    # ----------------------------------------------------
+    def addMask(self, one=True):
+        [height, width, channel] = self.shape
+        self.mask = np.ones((height, width)) if one else np.zeros((height, width))
+
+    def removeMask(self) : self.mask = None
+
+    def hasMask(self): return isinstance(self.mask,np.ndarray)
+
+    def binaryMask(self): return (self.mask[self.mask!=1] ==0).all()
+
+    def isMaskOne(self): return (self.mask ==1).all()
+    # ----------------------------------------------------
+    # ----------------------------------------------------
+
+    # plot
+    def plot(self, ax, shortName=True, title=True):
+        if not (self.type == imageType.imageType.HDR):
+            ax.imshow(self.colorData)
+            sep = '/' if ('/' in self.name) else '\\'
+            name = self.name.split(sep)[-1] if shortName else self.name
+            if title: ax.set_title(name+"("+self.colorSpace.name +"/"+ str(self.type)+")")
+
+        else: # HDR
+            ax.imshow(self.process(miam.processing.TMO_CCTF.TMO_CCTF(), function='sRGB').colorData)
+            sep = '/' if ('/' in self.name) else '\\'
+            name = self.name.split(sep)[-1] if shortName else self.name
+            if title : ax.set_title(name+"("+self.colorSpace.name +"/"+ str(self.type)+"/"+ "sRGB_CCTF" +")")
+
+        ax.axis("off")
+
+    # magic operators
+    def __add__(self, other):
+        # create a copy
+        res = copy.deepcopy(self)
+
+        if isinstance(other,type(self)): # both are images
+            if self.shape == other.shape: # both share same size
+
+                if (not self.hasMask()) and (not other.hasMask()): # none has mask
+                    res.colorData = self.colorData + other.colorData
+
+                else: # self or other has a mask
+
+                    if not self.hasMask(): self.addMask()
+                    if not other.hasMask(): other.addMask()
+
+                    # both have a mask
+                    res.colorData = self.colorData*self.mask[...,np.newaxis] \
+                        + other.colorData*other.mask[...,np.newaxis]
+
+                    # mask
+                    res.mask = self.mask + other.mask
+
+                    # regularization
+                    res.colorData[res.mask>1] = res.colorData[res.mask>1] / res.mask[res.mask>1,np.newaxis] 
+
+                    res.mask[res.mask>1] = 1
+            else:
+                print("WARNING[Image.__add__(self,other): both image must have the same shape ! return a copy of ",self,"]")
+            
+            # hdr or sdr
+            res.type = imageType.imageType.HDR if (self.isHDR() or other.isHDR()) else imageType.imageType.SDR
+
+        elif isinstance(other, (int, float)): # sum with int or float
+            res.colorData = self.colorData + other
+
+        if not self.isHDR(): # if not HDR clip value
+            res.colorData[res.colorData>1] = 1
+            res.colorData[res.colorData<0] = 0
+
+        return res
+
+    def __radd__(self, other):  return self.__add__(other)
+
+    def __sub__(self, other):
+        # create a copy
+        res = copy.deepcopy(self)
+
+        if isinstance(other,type(self)): # both are image
+            if self.shape == self.other: # same size
+
+                if (not self.hasMask()) and (not other.hasMask()): # mask management
+                    res.colorData = self.colorData - other.colorData
+
+                else: # self or other has a mask
+                    if not self.hasMask(): self.addMask()
+                    if not other.hasMask(): other.addMask()
+                    # both have a mask
+                    res.colorData = self.colorData*self.mask[...,np.newaxis] \
+                        - other.colorData*other.mask[...,np.newaxis]
+                    # mask
+                    res.mask = self.mask + other.mask[...,np.newaxis]
+                    res.mask[res.mask>1] = 1            
+            else:
+                print("WARNING[Image.__sub__(self,other): both image must have the same shape ! return a copy of ",self,"]")
+
+        elif isinstance(other, (int, float)):
+            res.colorData = self.colorData + other
+
+        return res
+
+    def __rsub__(self, other):  
+        # create a copy
+        res = copy.deepcopy(self)
+
+        if isinstance(other,type(self)):
+            if self.shape == self.other:
+                res.colorData = other.colorData - self.colorData
+            else:
+                print("WARNING[Image.__sub__(self,other): both image must have the same shape ! return a copy of ",self,"]")
+
+        elif isinstance(other, (int, float)):
+            res.colorData = other - self.colorData
+
+        return res
+
+    def __mul__ (self, other):
+        # create a copy
+        res = copy.deepcopy(self)
+
+        if isinstance(other,type(self)):
+            if self.shape == self.other:
+                res.colorData = self.colorData * other.colorData
+            else:
+                print("WARNING[Image.__mul__(self,other): both image must have the same shape ! return a copy of ",self,"]")
+
+        elif isinstance(other, (int, float)):
+            res.colorData = self.colorData * other
+
+        return res
+
+    def __rmul__ (self, other): return self.__mul__(other)
+
+    def __pow__(self,other):
+        # create a copy
+        res = copy.deepcopy(self)
+
+        if isinstance(other, (int, float)):
+            res.colorData = self.colorData**other
+
+        return res
+
+    def __rpow__(self,other): return self.__pow__(other)
+
+    # class methods
+    def readImage(filename,readExif=True):
+
+        # default values
+        scalingFactor = 1.0
+        type = None
+        linear = None
+
+        # image name
+        path, name = os.path.split(filename)
+
+        if readExif:
+            # reading metadata then build  exposure and colour space from exif
+            exif        = Exif.Exif.buildFromFileName(filename)
+            colorspace = ColorSpace.ColorSpace.buildFromExif(exif)
+        else:
+            colorspace = ColorSpace.ColorSpace.build('sRGB')
+
+        # extension sensitive
+        splits = filename.split('.')
+        ext = splits[-1].lower()
+
+        # load raw file using rawpy
+        if ext=="arw" or ext=="dng":
+            outBit = 16
+            raw = rawpy.imread(filename)
+            ppParams = rawpy.Params(demosaic_algorithm=None, half_size=False, 
+                                            four_color_rgb=False, dcb_iterations=0, 
+                                            dcb_enhance=False, fbdd_noise_reduction=rawpy.FBDDNoiseReductionMode.Off, 
+                                            noise_thr=None, median_filter_passes=0, 
+                                            use_camera_wb=True,                                 # default False
+                                            use_auto_wb=False, 
+                                            user_wb=None, 
+                                            output_color=rawpy.ColorSpace.sRGB,                 # output in SRGB
+                                            output_bps=outBit,                                  # default 8
+                                            user_flip=None, user_black=None, 
+                                            user_sat=None, no_auto_bright=False, 
+                                            auto_bright_thr=None, adjust_maximum_thr=0.75, 
+                                            bright=1.0, highlight_mode=rawpy.HighlightMode.Clip, 
+                                            exp_shift=None, exp_preserve_highlights=0.0, 
+                                            no_auto_scale=False,
+                                            gamma=None,                                         # linear output
+                                            chromatic_aberration=None, bad_pixels_path=None)
+            imgDouble = colour.utilities.as_float_array(raw.postprocess(ppParams))/(pow(2,16)-1)
+            raw.close()
+            type = imageType.RAW
+            linear = True
+
+        # load jpg, tiff, hdr file using colour
+        else:
+            imgDouble = colour.read_image(filename, bit_depth='float32', method='Imageio')
+            imgDouble = Image.forceColorData3(imgDouble)
+            type = imageType.imageType.SDR
+            linear = False
+
+        # post processing for HDR scaling to [ ,1]
+        if ext =="hdr":
+            imgDouble, scalingFactor = Image.scaleMaxOne(imgDouble)
+            type = imageType.imageType.HDR
+            linear = True
+
+        #return Image(imgDouble, filename, type, linear, colorspace, scalingFactor) # long name
+        return Image(imgDouble, name, type, linear, colorspace, scalingFactor)      # short name
+
+    def read(filename,exif=True): return Image.readImage(filename,readExif=exif)
+
+    def newImage(shape, colorSpaceName=None, color=None, type=None,name=None):
+        """ description """
+
+        # default values
+        if not colorSpaceName : colorSpaceName = 'sRGB'
+        if not color : color = np.asarray([0.0,0.0,0.0]) 
+        if not type : type : imageType.imageType.SDR
+        linear = False if ((type==imageType.imageType.SDR) and (colorSpaceName=='sRGB')) else True
+        if not name : name = "no name["+colorSpaceName+"]" 
+        scalingFactor = 1.0
+
+        # colorSpace
+        colorSpace = ColorSpace.ColorSpace.build(colorSpaceName) 
+
+        # colorData
+        if len(shape) == 2 :
+            (h,w) = shape
+            newShape = (h,w,3)
+        else:
+            newShape = shape
+
+        colorData = np.ones(newShape)
+        colorData[:,:,0] = colorData[:,:,0]*color[0]
+        colorData[:,:,1] = colorData[:,:,1]*color[1]
+        colorData[:,:,2] = colorData[:,:,2]*color[2]
+
+        return Image(colorData, name, type, linear, colorSpace, scalingFactor)
+
+    def forceColorData3(imgDouble):
+        """ force color data to hace 3 channels """
+
+        # force image to 3 channels
+        if len(imgDouble.shape) == 2:
+            # single channel image
+            h,w = imgDouble.shape
+            img3 = np.ones([h,w,3])
+            img3[:,:,0] = imgDouble
+            img3[:,:,1] = imgDouble
+            img3[:,:,2] = imgDouble
+        else:
+            h,w,c = imgDouble.shape
+            if c==4:
+                # remove alpha channel
+                img3 = np.ones([h,w,3])
+                img3[:,:,0] = imgDouble[:,:,0]
+                img3[:,:,1] = imgDouble[:,:,1]
+                img3[:,:,2] = imgDouble[:,:,2]
+            else:
+                img3 = imgDouble
+        return img3 
+
+    def array2vector(img):
+        """ transform 2D array of color data to vector """
+
+        if len(img.shape) ==2 :
+            x,y = img.shape
+            c = 1
+        else:
+            x,y,c = img.shape
+        return np.reshape(img, (x * y, c))
+
+    def scaleMaxOne(img):
+        """ scale image colorData in [0, 1] space """
+
+        imgVector = Image.array2vector(img)
+        R, G, B = imgVector[:,0], imgVector[:,1], imgVector[:,2]
+        maxRGB = max([np.amax(R), np.amax(G), np.amax(B)]) 
+
+        return img/maxRGB, 1.0/maxRGB

+ 1 - 0
_miamG/miam/image/__init__.py

@@ -0,0 +1 @@
+