|
@@ -0,0 +1,532 @@
|
|
|
+# import
|
|
|
+# ------------------------------------------------------------------------------------------
|
|
|
+import os
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+import numpy as np
|
|
|
+import multiprocessing as mp
|
|
|
+import easygui
|
|
|
+import imageio
|
|
|
+
|
|
|
+# miam import
|
|
|
+import miam.image.Image as MIMG
|
|
|
+import miam.image.imageType as MTYPE
|
|
|
+import miam.image.channel as MCH
|
|
|
+import miam.image.ColorSpace as MICS
|
|
|
+
|
|
|
+import miam.processing.ColorSpaceTransform as MCST
|
|
|
+import miam.processing.TMO_Lightness as TMO_L
|
|
|
+import miam.processing.ContrastControl as PCC
|
|
|
+import miam.histogram.Histogram as MHIST
|
|
|
+import miam.aesthetics.LightnessAesthetics as MLAC
|
|
|
+import miam.aesthetics.Palette as MPAL
|
|
|
+import miam.imageDB.ImageDB
|
|
|
+import miam.imageDB.POGChecker
|
|
|
+import miam.imageDB.HwHDRBuilder
|
|
|
+import miam.html.generator
|
|
|
+import miam.utils
|
|
|
+
|
|
|
+import miam.pointcloud.PointCloud2D as MPC2D
|
|
|
+import miam.classification.kmeans
|
|
|
+import miam.math.Distance
|
|
|
+import miam.math.Normalize
|
|
|
+
|
|
|
+import miam.classification.colorPaletteKmeanDisplay
|
|
|
+
|
|
|
+# ------------------------------------------------------------------------------------------
|
|
|
+# MIAM project 2020
|
|
|
+# ------------------------------------------------------------------------------------------
|
|
|
+# author: remi.cozot@univ-littoral.fr
|
|
|
+# ------------------------------------------------------------------------------------------
|
|
|
+# --------------------------------------------> Cluster
|
|
|
+# --------------------------------------------> Lightness
|
|
|
+
|
|
|
+
|
|
|
+def clusterPalette():
|
|
|
+
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ #
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ # config: configfile
|
|
|
+ jsonfile = "../DB/config_POG_DB.json"
|
|
|
+ # palettes files
|
|
|
+ allPalettes_2colorsNoBlack = "../DB/POG_DB_Lab_kmeans_Palette_2colorsNoBlack.npy"
|
|
|
+ allPalettes_3colorsNoBlack = "../DB/POG_DB_Lab_kmeans_Palette_3colorsNoBlack.npy"
|
|
|
+ allPalettes_4colorsNoBlack = "../DB/POG_DB_Lab_kmeans_Palette_4colorsNoBlack.npy"
|
|
|
+ allPalettes_5colorsNoBlack = "../DB/POG_DB_Lab_kmeans_Palette_5colorsNoBlack.npy"
|
|
|
+ optimalNumberOfClusters = 4 #5
|
|
|
+
|
|
|
+ distanceToCentroids_5colorsNoBlack = "../DB/POG_DB_dist_to_centroids_Palette_5colorsNoBlack.npy"
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ print("MIAM[POG Cluster Palette]")
|
|
|
+
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ # boolean to select what to do
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ displayPalette2 = False
|
|
|
+ displayPalette3 = False
|
|
|
+ displayPalette5 = False
|
|
|
+
|
|
|
+ clusterPalettes = False
|
|
|
+
|
|
|
+ clusterPalettes_ncentroids = False
|
|
|
+ displayPaletteClasses = True
|
|
|
+ searchOptimalNumberOfClusters = False
|
|
|
+ displayBestPaletteClass = True
|
|
|
+ distanceToCentroids = False
|
|
|
+ distanceToCentroidsAnalysis = False
|
|
|
+
|
|
|
+ bestImagePerClass = True
|
|
|
+
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ # first analysis of palettes
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if displayPalette2:
|
|
|
+ # try to see something with palettes
|
|
|
+ print("MIAM[------------------------------------------]")
|
|
|
+ print("MIAM[display Palette 2 colors in (L)ab]")
|
|
|
+
|
|
|
+ # load all palette 2 colors no black
|
|
|
+ pal2CNB = np.load(allPalettes_2colorsNoBlack)
|
|
|
+ print("MIAM[load Palette 2 colors: palette object shape",pal2CNB.shape,"]")
|
|
|
+
|
|
|
+
|
|
|
+ plt.figure("Palette 2 color in ab")
|
|
|
+ for i,p in enumerate(pal2CNB[0:-1]):
|
|
|
+ print(i,'/',pal2CNB.shape[0],' ',end='\r')
|
|
|
+ # plot palette
|
|
|
+ x = p[:,1] # a -> x
|
|
|
+ y = p[:,2] # b -> y
|
|
|
+ plt.plot(x,y)
|
|
|
+
|
|
|
+ plt.show(block=True)
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if displayPalette3:
|
|
|
+ # try to see something with palettes
|
|
|
+ print("MIAM[------------------------------------------]")
|
|
|
+ print("MIAM[display Palette 3 colors in (L)ab]")
|
|
|
+
|
|
|
+ # load all palette 3 colors no black
|
|
|
+ pal3CNB = np.load(allPalettes_3colorsNoBlack)
|
|
|
+ print("MIAM[load Palette 3 colors: palette object shape",pal3CNB.shape,"]")
|
|
|
+
|
|
|
+
|
|
|
+ plt.figure("Palette 3 color in ab")
|
|
|
+ for i,p in enumerate(pal3CNB[0:250]):
|
|
|
+ print(i,'/',pal3CNB.shape[0],' ',end='\r')
|
|
|
+ # plot palette
|
|
|
+ x = p[:,1] # a -> x
|
|
|
+ x = np.append(x,x[0])
|
|
|
+ y = p[:,2] # b -> y
|
|
|
+ y = np.append(y,y[0])
|
|
|
+ plt.plot(x,y,'o--', linewidth=1, markersize=3)
|
|
|
+ plt.plot([-100,100],[0,0],'k-')
|
|
|
+ plt.plot([0,0],[-100,100],'k-')
|
|
|
+ plt.show(block=True)
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if displayPalette5:
|
|
|
+ # try to see something with palettes
|
|
|
+ print("MIAM[------------------------------------------]")
|
|
|
+ print("MIAM[display Palette 5 colors in (L)ab]")
|
|
|
+
|
|
|
+ # load all palette 5 colors no black
|
|
|
+ pal5CNB = np.load(allPalettes_5colorsNoBlack)
|
|
|
+ print("MIAM[load Palette 5 colors: palette object shape",pal5CNB.shape,"]")
|
|
|
+
|
|
|
+
|
|
|
+ plt.figure("Palette 5 color in ab")
|
|
|
+ for i,p in enumerate(pal5CNB[0:-1]):
|
|
|
+ print(i,'/',pal5CNB.shape[0],' ',end='\r')
|
|
|
+ # plot palette
|
|
|
+ x = p[:,1] # a -> x
|
|
|
+ y = p[:,2] # b -> y
|
|
|
+
|
|
|
+ pc = MPC2D.PointCloud2D(x,y)
|
|
|
+ xx,yy = MPC2D.PointCloud2D.toXYarray(pc.convexHull())
|
|
|
+
|
|
|
+ plt.plot(xx,yy,'o--', linewidth=1, markersize=3)
|
|
|
+ plt.plot([-100,100],[0,0],'k-')
|
|
|
+ plt.plot([0,0],[-100,100],'k-')
|
|
|
+ plt.show(block=True)
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ # second analysis of palettes: k-means of palettes
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if clusterPalettes:
|
|
|
+
|
|
|
+ # load all palette 5 colors no black
|
|
|
+ pal5CNB = np.load(allPalettes_5colorsNoBlack)
|
|
|
+ print("MIAM[load Palette (5 colors): palette object shape",pal5CNB.shape,"]")
|
|
|
+
|
|
|
+ print("MIAM[clustering Palette (5 colors) launch !]")
|
|
|
+ # __init__(self, distance, normalize):
|
|
|
+ km = miam.classification.kmeans.kmeans(miam.math.Distance.Distance(miam.math.Distance.cL2distance),
|
|
|
+ miam.math.Normalize.Normalize(miam.math.Normalize.sortNorm))
|
|
|
+
|
|
|
+ # kmeans(self,samples, nbClusters, nbIter, display = None, initRange= ...):
|
|
|
+ centroids,assigments,assigmentsIdx = km.kmeans(pal5CNB[0:1000],
|
|
|
+ 4, #4
|
|
|
+ 100, #100
|
|
|
+ display = miam.classification.colorPaletteKmeanDisplay.colorPaletteKmeanDisplay(),
|
|
|
+ initRange=[(0,100),(-100,100),(-100,100)],
|
|
|
+ multiPro=True)
|
|
|
+ print("MIAM[clustering done !]")
|
|
|
+
|
|
|
+ # plot centroids
|
|
|
+ plt.figure("Palette (5 color) in ab")
|
|
|
+ for p in centroids:
|
|
|
+ # plot palette
|
|
|
+ x = p[:,1] # a -> x
|
|
|
+ y = p[:,2] # b -> y
|
|
|
+
|
|
|
+ pc = MPC2D.PointCloud2D(x,y)
|
|
|
+ xx,yy = MPC2D.PointCloud2D.toXYarray(pc.convexHull())
|
|
|
+
|
|
|
+ plt.plot(xx,yy,'o--', linewidth=1, markersize=3)
|
|
|
+ plt.plot([-100,100],[0,0],'k-')
|
|
|
+ plt.plot([0,0],[-100,100],'k-')
|
|
|
+ plt.show(block=True)
|
|
|
+
|
|
|
+ # np.save("../DB/"+"POG_DB"+'_centroids_palette_5colors_4centroids',centroids)
|
|
|
+ # np.save("../DB/"+"POG_DB"+'_assigments_palette_5colors_4centroids',assigments)
|
|
|
+ # np.save("../DB/"+"POG_DB"+'_assigmentsIdx_palette_5colors_4centroids',assigmentsIdx)
|
|
|
+ # print("MIAM[","POG_DB"," clustering save saved !]")
|
|
|
+ # test the number of centroids
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if clusterPalettes_ncentroids:
|
|
|
+ # load all palette 5 colors no black
|
|
|
+ pal5CNB = np.load(allPalettes_5colorsNoBlack)
|
|
|
+ print("MIAM[load Palette 5 colors: palette object shape",pal5CNB.shape,"]")
|
|
|
+
|
|
|
+ print("MIAM[clustering Palette 5 colors launch !]")
|
|
|
+ # __init__(self, distance, normalize):
|
|
|
+ km = miam.classification.kmeans.kmeans(miam.math.Distance.Distance(miam.math.Distance.cL2distance),
|
|
|
+ miam.math.Normalize.Normalize(miam.math.Normalize.sortNorm))
|
|
|
+
|
|
|
+ for nbc in [2,3,4,5,6,7,8,9,10]: #,11,12,13,14,15]:
|
|
|
+ print("MIAM[clustering Palette 5 colors:",str(nbc)," centroids launch !]")
|
|
|
+
|
|
|
+ # kmeans
|
|
|
+ centroids,assigments,assigmentsIdx = km.kmeans(pal5CNB,
|
|
|
+ nbc,
|
|
|
+ 500,
|
|
|
+ display=miam.classification.colorPaletteKmeanDisplay.colorPaletteKmeanDisplay(),
|
|
|
+ initRange=[(0,100),(-100,100),(-100,100)],
|
|
|
+ multiPro=True)
|
|
|
+ print("MIAM[clustering done !]")
|
|
|
+
|
|
|
+ np.save("../DB/"+"POG_DB"+'_centroids_palette_5colors_'+str(nbc)+'centroids',centroids)
|
|
|
+ np.save("../DB/"+"POG_DB"+'_assigments_palette_5colors_'+str(nbc)+'centroids',assigments)
|
|
|
+ np.save("../DB/"+"POG_DB"+'_assigmentsIdx_palette_5colors_'+str(nbc)+'centroids',assigmentsIdx)
|
|
|
+
|
|
|
+ print("MIAM[","POG_DB"," clustering save saved !]")
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ # analysis of palettes classes
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if displayPaletteClasses:
|
|
|
+
|
|
|
+ numberOfClusters = [2,3,4,5,6,7,8,9,10,11,12,13,14,15]
|
|
|
+ for numberOfCluster in numberOfClusters:
|
|
|
+ print("----------------------------------------------")
|
|
|
+ print("numberOfCluster:",numberOfCluster)
|
|
|
+ print("----------------------------------------------")
|
|
|
+
|
|
|
+ # load centroids , etc.
|
|
|
+ centroids = np.load("../DB/"+"POG_DB"+'_centroids_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigments = np.load("../DB/"+"POG_DB"+'_assigments_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigmentsIdx = np.load("../DB/"+"POG_DB"+'_assigmentsIdx_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+
|
|
|
+
|
|
|
+ # plot images of palette
|
|
|
+ fig, ax = plt.subplots(numberOfCluster,1)
|
|
|
+ fig.suptitle("CentroidsImage:"+str(numberOfCluster)+"/ palette 5 colors")
|
|
|
+
|
|
|
+ for i,p in enumerate(centroids):
|
|
|
+ # debug
|
|
|
+ print("| palette (",i,"): number of image assigned >>", len(assigmentsIdx[i]))
|
|
|
+ # create palette object
|
|
|
+ pal = MPAL.Palette('Palette_'+str(i),p, MICS.ColorSpace.buildLab())
|
|
|
+ # create image of palette
|
|
|
+ imgPal = pal.createImageOfPalette()
|
|
|
+ imgPal.plot(ax[i],title=False)
|
|
|
+
|
|
|
+ plt.show(block=False)
|
|
|
+
|
|
|
+ # plot centroids
|
|
|
+ figC = plt.figure()
|
|
|
+ figC.suptitle("Centroids:"+str(numberOfCluster)+"/ palette 5 colors")
|
|
|
+ for i,p in enumerate(centroids):
|
|
|
+
|
|
|
+ # plot palette
|
|
|
+ x = p[:,1] # a -> x
|
|
|
+ y = p[:,2] # b -> y
|
|
|
+
|
|
|
+ pc = MPC2D.PointCloud2D(x,y)
|
|
|
+ xx,yy = MPC2D.PointCloud2D.toXYarray(pc.convexHull())
|
|
|
+
|
|
|
+ plt.plot(xx,yy,'o--', linewidth=1, markersize=3)
|
|
|
+
|
|
|
+ if numberOfCluster != numberOfClusters[-1]:
|
|
|
+ plt.show(block=False)
|
|
|
+ else:
|
|
|
+ plt.show(block=True)
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if searchOptimalNumberOfClusters:
|
|
|
+ # find the optimal number of clusters
|
|
|
+ res = []
|
|
|
+
|
|
|
+ numberOfClusters = [2,3,4,5,6,7,8,9,10]
|
|
|
+
|
|
|
+ #distance
|
|
|
+ distance = miam.math.Distance.Distance(miam.math.Distance.cL2distance)
|
|
|
+ for numberOfCluster in numberOfClusters:
|
|
|
+
|
|
|
+ # DEBUG
|
|
|
+ print("--------------------------------------------------------------")
|
|
|
+ print(" number of clusters:",numberOfCluster)
|
|
|
+ print("--------------------------------------------------------------")
|
|
|
+
|
|
|
+ # load centroids , etc.
|
|
|
+ centroids = np.load("../DB/"+"POG_DB"+'_centroids_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigments = np.load("../DB/"+"POG_DB"+'_assigments_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigmentsIdx = np.load("../DB/"+"POG_DB"+'_assigmentsIdx_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+
|
|
|
+ allSumD2 = 0
|
|
|
+ for i,centroid in enumerate(centroids):
|
|
|
+
|
|
|
+ # DEBUG
|
|
|
+ print("| centroids(",i,"): number of assigments >>", len(assigments[i]))
|
|
|
+ print("+-------------------------------------------------------------")
|
|
|
+
|
|
|
+ PaletteCentroid = MPAL.Palette('Palette_'+str(i),centroid, MICS.ColorSpace.buildLab())
|
|
|
+
|
|
|
+ sumD2 = 0
|
|
|
+ for j,ass in enumerate(assigments[i]):
|
|
|
+
|
|
|
+ # DEBUUG
|
|
|
+ print("| > assigment(",j,")/", len(assigments[i])," ",end='\r')
|
|
|
+
|
|
|
+ PaletteAss = MPAL.Palette('Palette_'+str(i),ass, MICS.ColorSpace.buildLab())
|
|
|
+
|
|
|
+ # compute distance
|
|
|
+ D2 = distance.eval(PaletteCentroid.colors,PaletteAss.colors)**2
|
|
|
+ sumD2 +=D2 # sum of distance between a centroids and its assigments
|
|
|
+ allSumD2 += sumD2 # sum of distance between all centroids and their respectives assigments
|
|
|
+ res.append(allSumD2)
|
|
|
+ ypps = []
|
|
|
+ for i,y in enumerate(res[1:-1]):
|
|
|
+ ypp = res[i+1]+res[i-1]-2*res[i]
|
|
|
+ print("d2 (sum of squared distance)/d (nb clusters) (",i,"):",ypp)
|
|
|
+ ypps.append(ypp)
|
|
|
+ plt.figure("sum of squared distance / number of centroids")
|
|
|
+ plt.plot(numberOfClusters,res,'b-')
|
|
|
+ plt.plot(numberOfClusters[1:-1],ypps,'r')
|
|
|
+ plt.show(block=True)
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if displayBestPaletteClass:
|
|
|
+
|
|
|
+ numberOfCluster = 5
|
|
|
+ print("----------------------------------------------")
|
|
|
+ print("numberOfCluster:",numberOfCluster)
|
|
|
+ print("----------------------------------------------")
|
|
|
+
|
|
|
+ # load centroids , etc.
|
|
|
+ centroids = np.load("../DB/"+"POG_DB"+'_centroids_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigments = np.load("../DB/"+"POG_DB"+'_assigments_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigmentsIdx = np.load("../DB/"+"POG_DB"+'_assigmentsIdx_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+
|
|
|
+ colors = ['b', 'g','r','c','m']
|
|
|
+
|
|
|
+ # plot number of assigments per cluster
|
|
|
+ figNBA = plt.figure("number of assigments per cluster ['b', 'g','r','c','m']")
|
|
|
+ nbAss = []
|
|
|
+ for i,p in enumerate(centroids): nbAss.append(len(assigmentsIdx[i]))
|
|
|
+ plt.bar(colors,nbAss,color=colors)
|
|
|
+ plt.show(block=False)
|
|
|
+
|
|
|
+ # plot images of palette
|
|
|
+ fig, ax = plt.subplots(numberOfCluster,2)
|
|
|
+ fig.suptitle("Centroids:"+str(numberOfCluster)+"/ palette 5 colors ['b', 'g','r','c','m']")
|
|
|
+ for i,p in enumerate(centroids):
|
|
|
+ # debug
|
|
|
+ print("| palette (",i,"): number of image assigned >>", len(assigmentsIdx[i]))
|
|
|
+ # create palette object
|
|
|
+ pal = MPAL.Palette('Palette_'+str(i),p, MICS.ColorSpace.buildLab())
|
|
|
+ # create image of palette
|
|
|
+ imgPal = pal.createImageOfPalette()
|
|
|
+ imgPal.plot(ax[i,1],title=False)
|
|
|
+ ax[i,0].plot(0,0,'o'+colors[i],markersize=10)
|
|
|
+ ax[i,0].axis("off")
|
|
|
+
|
|
|
+ plt.show(block=False)
|
|
|
+
|
|
|
+ # plot centroids
|
|
|
+ figC = plt.figure()
|
|
|
+ figC.suptitle("Centroids:"+str(numberOfCluster)+"/ palette 5 colors")
|
|
|
+ for i,p in enumerate(centroids):
|
|
|
+
|
|
|
+ # plot palette
|
|
|
+ x = p[:,1] # a -> x
|
|
|
+ y = p[:,2] # b -> y
|
|
|
+
|
|
|
+ pc = MPC2D.PointCloud2D(x,y)
|
|
|
+ xx,yy = MPC2D.PointCloud2D.toXYarray(pc.convexHull())
|
|
|
+
|
|
|
+ plt.plot(xx,yy,colors[i]+'o--', linewidth=1, markersize=3)
|
|
|
+
|
|
|
+ plt.show(block=True)
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ # POG: cluster analysis PART 1: distance to each centroids
|
|
|
+ # -----------------------------------------------------------------------------------------
|
|
|
+ if distanceToCentroids:
|
|
|
+
|
|
|
+ numberOfCluster = 5
|
|
|
+ print("----------------------------------------------")
|
|
|
+ print("numberOfCluster:",numberOfCluster)
|
|
|
+ print("----------------------------------------------")
|
|
|
+
|
|
|
+ # load centroids , etc.
|
|
|
+ centroids = np.load("../DB/"+"POG_DB"+'_centroids_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigments = np.load("../DB/"+"POG_DB"+'_assigments_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigmentsIdx = np.load("../DB/"+"POG_DB"+'_assigmentsIdx_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+
|
|
|
+ # load all palette
|
|
|
+ allPalettes = np.load("../DB/POG_DB_Lab_kmeans_Palette_5colorsNoBlack.npy", allow_pickle=True)
|
|
|
+
|
|
|
+ #distance
|
|
|
+ distance = miam.math.Distance.Distance(miam.math.Distance.cL2distance)
|
|
|
+
|
|
|
+ # buid palette objects
|
|
|
+ pCentroids = []
|
|
|
+ for i,cent in enumerate(centroids):
|
|
|
+ c = MPAL.Palette('Palette_'+str(i),cent, MICS.ColorSpace.buildLab())
|
|
|
+ pCentroids.append(c)
|
|
|
+
|
|
|
+ # distToCentroids
|
|
|
+ distToCentroids = []
|
|
|
+ # distance to centroids
|
|
|
+ for i, palette in enumerate(allPalettes):
|
|
|
+
|
|
|
+ # DEBUG
|
|
|
+ print("> palette(",i,")/", allPalettes.shape[0]," ",end='\r')
|
|
|
+
|
|
|
+ # get raw image histogram and build Histogram Object
|
|
|
+ p = MPAL.Palette('Palette_'+str(i),palette, MICS.ColorSpace.buildLab())
|
|
|
+
|
|
|
+ distToCent = []
|
|
|
+
|
|
|
+ for j,hc in enumerate(pCentroids):
|
|
|
+ d = distance.eval(hc.colors,p.colors)
|
|
|
+ distToCent.append(d)
|
|
|
+
|
|
|
+ distToCentroids.append(distToCent)
|
|
|
+
|
|
|
+ np.save(distanceToCentroids_5colorsNoBlack,distToCentroids)
|
|
|
+ rows = len(distToCentroids)
|
|
|
+ cols = len(list(zip(*distToCentroids))) #cols = len(distToCentroids[0])
|
|
|
+
|
|
|
+ print("")
|
|
|
+ print("MIAM[distToCentroids.shape(", rows,"x",cols,")]")
|
|
|
+ print("MIAM[distToCentroids[0]:", distToCentroids[0],")]")
|
|
|
+ print("MIAM[","POG_DB"," distance for each image to each centroids saved !]")
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if distanceToCentroidsAnalysis:
|
|
|
+
|
|
|
+ numberOfCluster = 5
|
|
|
+ print("----------------------------------------------")
|
|
|
+ print(" distance to centroids ")
|
|
|
+ print("----------------------------------------------")
|
|
|
+ print("numberOfCluster:",numberOfCluster)
|
|
|
+ print("----------------------------------------------")
|
|
|
+ distToCentroids = np.load(distanceToCentroids_5colorsNoBlack, allow_pickle=True)
|
|
|
+
|
|
|
+ # get data
|
|
|
+ fig, ax = plt.subplots(1,numberOfCluster)
|
|
|
+ fig.suptitle('distance to centroids')
|
|
|
+ colors = ['b', 'g','r','c','m','y','k']
|
|
|
+ # sort
|
|
|
+ for i in range(numberOfCluster):
|
|
|
+ idxSorted = np.argsort(distToCentroids[:,i])#[::-1]
|
|
|
+
|
|
|
+ for j in range(numberOfCluster):
|
|
|
+ ax[i].plot((distToCentroids[idxSorted[0:1000],j]),colors[j%len(colors)]+'o', markersize=1)
|
|
|
+ plt.show(block=True)
|
|
|
+ # ------------------------------------------------------------------------------------------
|
|
|
+ if bestImagePerClass:
|
|
|
+ # config: configfile
|
|
|
+ jsonfile = "../DB/config_POG_DB.json"
|
|
|
+ # loading POG
|
|
|
+ pogDB = miam.imageDB.ImageDB.ImageDB(jsonConfigFile =jsonfile)
|
|
|
+ pogDB.check(miam.imageDB.POGChecker.POGChecker(local=True))
|
|
|
+
|
|
|
+ print("MIAM[",pogDB.name,":(csvFileName:: ",pogDB.csvFileName,", imagePATH::",pogDB.imagePATH,")]")
|
|
|
+
|
|
|
+ # number of class
|
|
|
+ numberOfCluster = 5
|
|
|
+ print("MIAM[ number of Palette Class:",numberOfCluster,"]")
|
|
|
+
|
|
|
+ # load centroids , etc.
|
|
|
+ centroids = np.load("../DB/"+"POG_DB"+'_centroids_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigments = np.load("../DB/"+"POG_DB"+'_assigments_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ assigmentsIdx = np.load("../DB/"+"POG_DB"+'_assigmentsIdx_palette_5colors_'+str(numberOfCluster)+'centroids'+'.npy', allow_pickle=True)
|
|
|
+ # for each palette/image distance to each cluster
|
|
|
+ distToCentroids = np.load(distanceToCentroids_5colorsNoBlack, allow_pickle = True)
|
|
|
+ # load all palette
|
|
|
+ allPalettes = np.load("../DB/POG_DB_Lab_kmeans_Palette_5colorsNoBlack.npy", allow_pickle=True)
|
|
|
+
|
|
|
+ # for each class
|
|
|
+ for i,p in enumerate(centroids):
|
|
|
+ # palette of class
|
|
|
+ pCentroid = MPAL.Palette('Palette_'+str(i),p, MICS.ColorSpace.buildLab())
|
|
|
+ pcCentroid = MPC2D.PointCloud2D(pCentroid.colors[:,1],pCentroid.colors[:,2])
|
|
|
+ xxCentroid,yyCentroid = MPC2D.PointCloud2D.toXYarray(pcCentroid.convexHull())
|
|
|
+ imgPaletteCentroid = pCentroid.createImageOfPalette()
|
|
|
+
|
|
|
+ # sort image according to class distance
|
|
|
+ idxSorted = np.argsort(distToCentroids[:,i])#[::-1]
|
|
|
+
|
|
|
+ # for ten best image of the current class
|
|
|
+ for j in range(3):
|
|
|
+
|
|
|
+ # best j-th image
|
|
|
+ imagefilename = pogDB.db[idxSorted[j]]
|
|
|
+ print("class(",i,"): best", j,">>",imagefilename)
|
|
|
+ img = MIMG.Image.read(imagefilename)
|
|
|
+ jj = idxSorted[j]
|
|
|
+ p = allPalettes[jj]
|
|
|
+ pImg = MPAL.Palette('Palette_'+str(i),p, MICS.ColorSpace.buildLab())
|
|
|
+ imgPImg = pImg.createImageOfPalette()
|
|
|
+
|
|
|
+ # palette contour
|
|
|
+ pcImage = MPC2D.PointCloud2D(pImg.colors[:,1],pImg.colors[:,2])
|
|
|
+ xxImage, yyImage = MPC2D.PointCloud2D.toXYarray(pcImage.convexHull())
|
|
|
+
|
|
|
+ # figure and axes
|
|
|
+ fig, ax = plt.subplots(2,2) # 1 row x 2 columns
|
|
|
+ fig.suptitle('best image('+str(j)+')/class('+str(i)+')')
|
|
|
+
|
|
|
+ ax[0,0].set_title('image')
|
|
|
+ img.plot(ax[0,0],title=False)
|
|
|
+
|
|
|
+ imgPImg.plot(ax[1,0],title=False)
|
|
|
+ ax[1,0].set_title('palette of image')
|
|
|
+
|
|
|
+ ax[0,1].set_title('palettes (red class/blue image)')
|
|
|
+ _range = max([np.amax(np.abs(centroids[:,:,1])),np.amax(np.abs(centroids[:,:,2]))])
|
|
|
+ for k, c in enumerate(centroids):
|
|
|
+ # plot palette
|
|
|
+ x = c[:,1] # a -> x
|
|
|
+ y = c[:,2] # b -> y
|
|
|
+ pc = MPC2D.PointCloud2D(x,y)
|
|
|
+ xx,yy = MPC2D.PointCloud2D.toXYarray(pc.convexHull())
|
|
|
+ if k != i: ax[0,1].plot(xx,yy,'m--')
|
|
|
+ ax[0,1].plot(xxCentroid,yyCentroid,'ro--')
|
|
|
+ ax[0,1].plot(xxImage,yyImage,'bo-')
|
|
|
+ ax[0,1].plot([- _range, _range],[0,0],'k')
|
|
|
+ ax[0,1].plot([0,0],[-_range,_range],'k')
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ imgPaletteCentroid.plot(ax[1,1],title=False)
|
|
|
+ ax[1,1].set_title("palette of class")
|
|
|
+
|
|
|
+
|
|
|
+ plt.show(block=True)
|