12345678910111213141516171819 |
- #!/usr/bin/python
- import class_KdJamet as kdj
- import numpy as np
- import sys
- if len(sys.argv) != 3:
- print "test_class_KdNN.py must be launch with two arguments:"
- print " $ test_class_KdNN.py LOG_KdNeuralNetwork_TestCase_Input.csv your_output.csv"
- sys.exit(-1)
-
- K = kdj.KdJamet('idMERIS')
- tab = np.loadtxt(sys.argv[1], skiprows=1)
- KDs = np.zeros(tab.shape,dtype=np.float32)
- for i in range(tab.shape[0]):
- KDs[i,:] = K.compute_allKd(tab[i,:])
-
- np.savetxt(sys.argv[2],KDs,fmt='%.7f',header="Kd%d Kd%d Kd%d Kd%d Kd%d Kd%d" %(K.WL[0],K.WL[1],K.WL[2],K.WL[3],K.WL[4],K.WL[5]))
-
|