123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- % This matlab script provides a demonstration of the informed and
- % constrained NMF algorithms proposed in the article:
- % [1] C. DORFFER, M. Puigt, G. Delmaire and G. Roussel, "Informed Nonnegative
- % Matrix Factorization Methods for Mobile Sensor Network Calibration", in
- % IEEE Transactions on Signal and Information Processing over Networks,
- % vol. 4, no. 4, pp. 667-682, Dec. 2018.
- %
- % Author: Clément DORFFER
- % Date: 26/11/2018
- % @: clement.dorffer@ensta-bretagne.fr
- %%
- clear
- close all
- clc
- addpath('functions/')
- rng(3)
- %% Simulation parameters
- N_Ref = 3; % Nb. of reference measurements
- N_Cpt = 25; % Nb. of mobile sensors
- Mu_beta = .9; % Mean sensors gain
- Mu_alpha = 5; % Mean sensors offset
- Bound_beta = [.01;1.5]; % Gain boundaries
- Bound_alpha = [3.5;6.5]; % Offset boundaries
- MV = .9; % Missing Value prop.
- RV = 0; % RendezVous prop.
- var_n = 0; % Noise variance
- %% Scene simulation
- [xx,yy] = meshgrid((-1:2/9:1),(-1:2/9:1));
- sig = [1;1];
- y=@(xx,yy) exp(-[xx;yy]'*diag(sig)*[xx;yy]);
- for i = 1:100
- g(i) = y(xx(i),yy(i));
- end
- g = g-min(g);
- g = .5*(g/max(g))+1e-5;
- G_theo = [ones(100,1),g']; % Theoretical matrix G (see eq.(3) of [1])
- figure
- subplot(221)
- imagesc(reshape(g,10,10))
- %% Sensors simulation
- F_theo = [max(Bound_beta(1),min(Bound_beta(2),Mu_beta+.5*randn(1,N_Cpt)));...
- max(Bound_alpha(1),min(Bound_alpha(2),Mu_alpha+.5*randn(1,N_Cpt)))];
- F_theo = [F_theo,[0;1]]; % Theoretical matrix F (see eq.(3) of [1])
- %% Data simulation
- X_theo = G_theo*F_theo; % Theoretical matrix X (see eq.(2) of [1])
- W = zeros(100,N_Cpt+1);
- idx_Ref = randperm(100);
- idx_Ref = idx_Ref(1:N_Ref); % Reference measurement locations
- W(idx_Ref,end) = 1;
- N_RV = round(N_Cpt*RV); % Nb. of sensors having a RendezVous
- idx_CptRV = randperm(N_Cpt);
- idx_CptRV = idx_CptRV(1:N_RV); % Selection of sensors having a RendezVous
- idx_RefRV = randi(N_Ref,1,N_Cpt);
- idx_RefRV = idx_Ref(idx_RefRV(1:N_RV)); % Selection of the references for each RendezVous
- for i = 1 : N_RV
- W(idx_RefRV(i),idx_CptRV(i)) = 1;
- end
- N_data = round((1-MV)*(N_Cpt)*(100-N_Ref)); % Nb. of measurements in data matrix X
- xCpt = 1 : 100;
- xCpt(idx_Ref) = []; % Reference free locations
- [xx,yy] = meshgrid(xCpt,1:N_Cpt); % Possibly sensed locations
- idx_data = randperm((100-N_Ref)*N_Cpt);
- for i = 1 : N_data
- W(xx(idx_data(i)),yy(idx_data(i))) = 1; % Sensor measurement placement
- end
- N = var_n*randn(100,N_Cpt+1); % Noise simulation
- N(:,end) = 0;
- N = max(N,-X_theo);
- SNR = snr(X_theo(W~=0),N(W~=0));
- X = W.*(X_theo+N); % Data matrix X
- subplot(222)
- imagesc(X)
- %% Calibration parameters
- % % Common parameters
- N_iter = 1.e5; % Maximum nb. of iterations
- Omega_G = [ones(100,1),W(:,end)]; % Mask on known values in G (see eq.(14) of [1])
- Omega_F = [zeros(2,N_Cpt),[1;1]]; % Mask on known values in F (see eq.(15) of [1])
- Phi_G = [ones(100,1),X(:,end)]; % Known values in G (see eq.(14) of [1])
- Phi_F = [zeros(2,N_Cpt),[0;1]]; % Known values in F (see eq.(15) of [1])
- Ginit = abs(randn(100,2)); % Initial matrix G
- Ginit = (1-Omega_G).*Ginit+Phi_G;
- Finit = [max(Bound_beta(1),min(Bound_beta(2),Mu_beta+.5*randn(1,N_Cpt)));...
- max(Bound_alpha(1),min(Bound_alpha(2),Mu_alpha+.5*randn(1,N_Cpt)))];
- Finit = [Finit,[0;1]]; % Initial matrix F
- Finit = (1-Omega_F).*Finit+Phi_F;
- % % Parameters for the "average constrained" approach (called ACIN-Cal in [1])
- Mean_F = mean(F_theo(:,1:N_Cpt),2);
- mu = 10; % Regularization weight
- % % Parameters for the Sparsity based regularization (called SpIN-Cal in [1])
- % Dictionary construction
- D = real(ifft(diag(ones(100,1))));
- D = [D(:,1:15),g',D(:,1:15),g'];
- D(51:end,1:16) = 0;
- D(1:50,17:end) = 0;
- D = D*diag(1./sqrt(sum(D.^2))); % Atoms normalisation
- k = 2; % Nb. of atoms to be choosen by the OMP
- lambda = 10; % Regularization weight
- %% Calibration
- % % IN-Cal
- [ G_IN_Cal , F_IN_Cal , RMSE_IN_Cal ] = IN_Cal( W , X , Ginit , Finit , Omega_G , Omega_F , Phi_G , Phi_F , F_theo , N_iter );
- % % ACIN-Cal
- [ G_ACIN_Cal , F_ACIN_Cal , RMSE_ACIN_Cal ] = ACIN_Cal( W , X , Ginit , Finit , Omega_G , Omega_F , Phi_G , Phi_F , Mean_F , mu , F_theo , N_iter );
- % % SpIN-Cal
- [ G_SpIN_Cal , F_SpIN_Cal , RMSE_SpIN_Cal ] = SpIN_Cal( W , X , Ginit , Finit , Omega_G , Omega_F , Phi_G , Phi_F , D , k , lambda , F_theo , N_iter );
- % % SpAIN-Cal
- [ G_SpAIN_Cal , F_SpAIN_Cal , RMSE_SpAIN_Cal ] = SpAIN_Cal( W , X , Ginit , Finit , Omega_G , Omega_F , Phi_G , Phi_F , D , k , lambda , Mean_F , mu , F_theo , N_iter );
- subplot(223)
- semilogy(RMSE_IN_Cal)
- axis([0 N_iter 1.e-16 1])
- hold all
- semilogy(RMSE_ACIN_Cal)
- semilogy(RMSE_SpIN_Cal)
- semilogy(RMSE_SpAIN_Cal)
|