solver.cpp 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. #include "solver.hpp"
  2. namespace Kernel{
  3. Solver::Solver(string filename){
  4. fstream file;
  5. file.open(filename.c_str(),fstream::in|fstream::binary);
  6. input_data.load(file,true);
  7. file.close();
  8. //HACK for pump
  9. for(auto it=input_data.source.pumps.begin();it!=input_data.source.pumps.end();++it){
  10. Pump& P=*(*it);
  11. double lX=input_data.geometry.lX;
  12. P.left_init*=lX;
  13. P.right_init*=lX;
  14. P.delta_left_init*=lX;
  15. P.delta_right_init*=lX;
  16. P.left_final*=lX;
  17. P.right_final*=lX;
  18. P.delta_left_final*=lX;
  19. P.delta_right_final*=lX;
  20. }
  21. pumps=new double*[input_data.geometry.nX];
  22. for(size_t ix=0;ix<input_data.geometry.nX;++ix){
  23. pumps[ix]=new double[input_data.geometry.nZ[ix]];
  24. }
  25. //Init Piccard object
  26. piccard.init(&input_data.geometry,pumps);
  27. //Create pool of solutions
  28. for(size_t i=0;i<Time::nT;++i){
  29. Solution* s=new Solution(input_data.geometry);
  30. solutions_stack.push(s);
  31. }
  32. //Init solutions
  33. solutions=new Solution*[Time::nT];
  34. for(size_t i=1;i<Time::nT;++i){
  35. solutions[i]=nullptr;
  36. }
  37. //Init first solution
  38. solutions[0]=new Solution(input_data.geometry);
  39. init_first_solution();
  40. m1=1;
  41. }
  42. void
  43. Solver::init_first_solution(){
  44. Solution& s=*solutions[0];
  45. //Init pressure
  46. for(size_t x=0;x<input_data.geometry.nX;++x){
  47. for(size_t z=0;z<input_data.geometry.nZ[x];++z){
  48. s.P[x][z]=input_data.initial_state->Pinit[x][z];
  49. }
  50. }
  51. //Init hydraulic head
  52. for(size_t x=0;x<input_data.geometry.nX;++x){
  53. s.hydr[x]=input_data.initial_state->hsat[x]+Psat/(Physics::rho*Physics::g);
  54. }
  55. //Init overland level
  56. for(size_t x=0;x<input_data.geometry.nX;++x){
  57. s.hov[x]=Physics::invPsol(input_data.geometry.hsoil[x],s.P[x][input_data.geometry.nZ[x]-1]); //TODO[Chrisophe] à initiliser
  58. }
  59. //Init l
  60. for(size_t x=0;x<input_data.geometry.nX;++x){
  61. double t=input_data.initial_state->hsat[x];
  62. s.l[x]=t;
  63. s.hsat[x]=t;
  64. }
  65. //Init Pl
  66. for(size_t x=0;x<input_data.geometry.nX;++x){
  67. s.Pl[x]=Psat;
  68. }
  69. //Initial state of input_data will be no longer used.
  70. input_data.remove_initial_state();
  71. number_computed_solutions=1;
  72. }
  73. bool
  74. Solver::compute_next_solution(){
  75. //cout<<"[solver::next]"<<endl;
  76. compute_sources(number_computed_solutions*Time::dT);
  77. if(m1>1) m1=m1/2;
  78. Solution* s=space_solution();
  79. if(s==nullptr) return false;
  80. solutions[number_computed_solutions++]=s;
  81. //cout<<"[next] done"<<endl;
  82. return true;
  83. }
  84. Solution*
  85. Solver::space_solution(){
  86. #ifdef MYDEBUG
  87. cout<<" [Solver::spaceSolution] start"<<endl;
  88. #endif
  89. size_t n1=0; //we work on time interval [n-1+n1/m1,n-1+(n1+1)/m1]
  90. piccard.previous_solution=solutions[number_computed_solutions-1];
  91. piccard.new_solution=get_new_solution();
  92. piccard.dt=Time::dT/m1*3600;
  93. while(m1<=max_time_subdivisions){
  94. #ifdef MYDEBUG
  95. if(Debug::level>1) cout<<" [Solver::spaceSolution] n1 = "<<n1<<" and m1 = "<<m1<<endl;
  96. #endif
  97. piccard.run();
  98. if(!piccard.has_converged){
  99. m1*=2;
  100. n1=0;
  101. piccard.dt/=2;
  102. piccard.previous_solution=solutions[number_computed_solutions-1];
  103. }
  104. else{
  105. if(n1!=0){//S_in is different form solution[n-1]
  106. release_solution(piccard.previous_solution);
  107. }
  108. ++n1;
  109. if(n1==m1) break;
  110. piccard.previous_solution=piccard.new_solution;
  111. piccard.new_solution=get_new_solution();
  112. }
  113. }
  114. if(m1>max_time_subdivisions){
  115. #ifdef MYDEBUG
  116. cout<<" [Solver::spaceSolution] not converge"<<endl;
  117. #endif
  118. release_solution(piccard.new_solution);
  119. return nullptr;
  120. }
  121. #ifdef MYDEBUG
  122. cout<<" [Solver::spaceSolution] converge"<<endl;
  123. #endif
  124. return piccard.new_solution;
  125. }
  126. void Solver::compute_sources(double t){
  127. for(size_t ix=0;ix<input_data.geometry.nX;++ix){
  128. double x=ix*input_data.geometry.dX;
  129. for(size_t iz=0;iz<input_data.geometry.nZ[ix];++iz){
  130. double z=input_data.geometry.hbot[ix]+iz*input_data.geometry.dZ[ix];
  131. pumps[ix][iz]=0;
  132. for(auto it=input_data.source.pumps.begin();it!=input_data.source.pumps.end();++it){
  133. double p=(*it)->value(x,z,t/Time::T);
  134. pumps[ix][iz]+=p;
  135. }
  136. }
  137. }
  138. }
  139. }