123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- #*******************
- #* Artin of type A *
- #*******************
- # Garside element
- ArtinA.garside_element(0)==a0
- Delta1=ArtinA.garside_element(1)
- Delta2=ArtinA.garside_element(2)
- Delta3=ArtinA.garside_element(3)
- Delta4=ArtinA.garside_element(4)
- Delta1==a1
- Delta2==a1*a2*Delta1
- Delta3==a1*a2*a3*Delta2
- Delta4==a1*a2*a3*a4*Delta3
- #******************
- #* Dual of type A *
- #******************
- # Left complement
- DualA.left_complement(a12,a12)==a00
- DualA.left_complement(a12,a23)==a13
- DualA.left_complement(a12,a34)==a34
- DualA.left_complement(a12,a24)==a14
- DualA.left_complement(a12,a14)==a14
- DualA.left_complement(a23,a12)==a12
- DualA.left_complement(a23,a23)==a00
- DualA.left_complement(a23,a13)==a12
- DualA.left_complement(a23,a34)==a24
- DualA.left_complement(a23,a24)==a24
- DualA.left_complement(a23,a14)==a14
- DualA.left_complement(a13,a12)==a23
- DualA.left_complement(a13,a23)==a23
- DualA.left_complement(a13,a13)==a00
- DualA.left_complement(a13,a34)==a14
- DualA.left_complement(a13,a24)==a23*a14
- DualA.left_complement(a13,a14)==a14
- DualA.left_complement(a34,a12)==a12
- DualA.left_complement(a34,a23)==a23
- DualA.left_complement(a34,a13)==a13
- DualA.left_complement(a34,a34)==a00
- DualA.left_complement(a34,a24)==a23
- DualA.left_complement(a34,a14)==a13
- DualA.left_complement(a24,a12)==a12
- DualA.left_complement(a24,a23)==a34
- DualA.left_complement(a24,a13)==a34*a12
- DualA.left_complement(a24,a34)==a34
- DualA.left_complement(a24,a24)==a00
- DualA.left_complement(a24,a14)==a12
- DualA.left_complement(a14,a12)==a24
- DualA.left_complement(a14,a23)==a23
- DualA.left_complement(a14,a13)==a34
- DualA.left_complement(a14,a34)==a34
- DualA.left_complement(a14,a24)==a24
- DualA.left_complement(a14,a14)==a00
- # Right complement
- DualA.right_complement(a12,a12)==a00
- DualA.right_complement(a12,a23)==a23
- DualA.right_complement(a12,a13)==a23
- DualA.right_complement(a12,a34)==a34
- DualA.right_complement(a12,a24)==a24
- DualA.right_complement(a12,a14)==a24
- DualA.right_complement(a23,a12)==a13
- DualA.right_complement(a23,a23)==a00
- DualA.right_complement(a23,a13)==a13
- DualA.right_complement(a23,a34)==a34
- DualA.right_complement(a23,a24)==a34
- DualA.right_complement(a23,a14)==a14
- DualA.right_complement(a13,a12)==a12
- DualA.right_complement(a13,a23)==a12
- DualA.right_complement(a13,a13)==a00
- DualA.right_complement(a13,a34)==a34
- DualA.right_complement(a13,a24)==a34*a12
- DualA.right_complement(a13,a14)==a34
- DualA.right_complement(a34,a12)==a12
- DualA.right_complement(a34,a23)==a24
- DualA.right_complement(a34,a13)==a14
- DualA.right_complement(a34,a34)==a00
- DualA.right_complement(a34,a24)==a24
- DualA.right_complement(a34,a14)==a14
- DualA.right_complement(a24,a12)==a14
- DualA.right_complement(a24,a23)==a23
- DualA.right_complement(a24,a13)==a23*a14
- DualA.right_complement(a24,a34)==a23
- DualA.right_complement(a24,a24)==a00
- DualA.right_complement(a24,a14)==a14
- DualA.right_complement(a14,a12)==a12
- DualA.right_complement(a14,a23)==a23
- DualA.right_complement(a14,a13)==a13
- DualA.right_complement(a14,a34)==a13
- DualA.right_complement(a14,a24)==a12
- DualA.right_complement(a14,a14)==a00
- # Garside structure
- DualA.left_lcm_complement(a12,a23)==a13
- DualA.left_lcm_complement(a12,a12*a23)==a13
- DualA.left_lcm_complement(a12,a23*a12)==a23
- DualA.left_lcm(a12,a23)==a13*a12
- DualA.left_lcm(a12,a12*a23)==a13*a12
- DualA.left_lcm(a12,a23*a12)==a23*a12
- DualA.right_lcm_complement(a12,a23)==a23
- DualA.right_lcm_complement(a12,a12*a23)==a23
- DualA.right_lcm_complement(a12,a23*a12)==a23*a12
- DualA.right_lcm(a12,a23)==a12*a23
- DualA.right_lcm(a12,a12*a23)==a12*a23
- DualA.right_lcm(a12,a23*a12)==a12*a23*a12
- DualA.left_gcd(a12,a12*a23)==a12
- DualA.left_gcd(a12,a23*a12)==a00
- DualA.left_gcd(a12*a23,a12*a12*a23)==a12*a23
- DualA.right_gcd(a12,a12*a23)==a12
- DualA.right_gcd(a12,a23*a12)==a12
- DualA.right_gcd(a12*a23,a12*a12*a23)==a12*a23
- DualA.left_gcd_x(a12*a23*a34,a12*a23*a12)==(a12*a23,a34)
- DualA.left_gcd_x(a12*a23*a12,a12*a23*a34)==(a12*a23,a12)
- DualA.right_gcd_x(a12*a23*a34,a12*a23*a12)==(a12*a23,a14)
- DualA.right_gcd_x(a12*a23*a12,a12*a23*a34)==(a13*a12,a23)
- DualA.is_left_divisible(a12*a23,a12)
- DualA.is_left_divisible(a12*a23,a23)
- DualA.is_left_divisible(a12*a23,a13)
- DualA.is_left_divisible(a12*a23,a14)==false
- DualA.is_left_divisible(a12*a23,a12*a12)==false
- DualA.is_right_divisible(a12*a23,a12)
- DualA.is_right_divisible(a12*a23,a23)
- DualA.is_right_divisible(a12*a23,a13)
- DualA.is_right_divisible(a12*a23,a14)==false
- DualA.is_right_divisible(a12*a23,a12*a12)==false
- DualA.is_left_divisible_x(a12*a23,a12)==(true,a23)
- DualA.is_left_divisible_x(a12*a23,a23)==(true,a13)
- DualA.is_left_divisible_x(a12*a23,a13)==(true,a12)
- DualA.is_left_divisible_x(a12*a23,a14)==(false,a00)
- DualA.is_left_divisible_x(a12*a23,a12*a12)==(false,a00)
- DualA.is_right_divisible_x(a12*a23,a12)==(true,a13)
- DualA.is_right_divisible_x(a12*a23,a23)==(true,a12)
- DualA.is_right_divisible_x(a12*a23,a13)==(true,a23)
- DualA.is_right_divisible_x(a12*a23,a14)==(false,a00)
- DualA.is_right_divisible_x(a12*a23,a12*a12)==(false,a00)
- # Garise automorphism
- DualA.phi(2,a12)==a23
- DualA.phi(2,a23)==a13
- DualA.phi(2,a13)==a12
- DualA.phi(2,a12,2)==a13
- DualA.phi(2,a23,2)==a12
- DualA.phi(2,a13,2)==a23
- DualA.phi(2,a12,-1)==a13
- DualA.phi(2,a23,-1)==a12
- DualA.phi(2,a13,-1)==a23
- DualA.phi(2,a12,-4)==a13
- DualA.phi(2,a23,-4)==a12
- DualA.phi(2,a13,-4)==a23
- DualA.phi(2,A12)==A23
- DualA.phi(2,A23)==A13
- DualA.phi(2,A13)==A12
- DualA.phi(2,a12*A13)==a23*A12
- # Garside element
- DualA.garside_element(0)==a00
- delta1=DualA.garside_element(1)
- delta2=DualA.garside_element(2)
- delta3=DualA.garside_element(3)
- delta4=DualA.garside_element(4)
- delta1==a12
- delta2==delta1*a23
- delta3==delta2*a34
- delta4==delta3*a45
- # phi-tail
- DualA.phi_tail(1,delta2)==delta1
- DualA.phi_tail(2,delta3)==delta2
- DualA.phi_tail(3,delta4)==delta3
- DualA.phi_tail(1,delta2*delta2)==delta1*delta1
- DualA.phi_tail(2,delta3*delta3)===delta2*delta2
- DualA.phi_tail(3,delta4*delta4)===delta3*delta3
- # phi-splitting
- DualA.phi_splitting(1,delta2)==[a12,a00,delta1]
- DualA.phi_splitting(1,delta2*delta2)==[a12,a12,a00,delta1*delta1]
- DualA.phi_splitting(2,a12)==[a12]
- DualA.phi_splitting(2,a23)==[a23]
- DualA.phi_splitting(2,a13)==[a13]
- DualA.phi_splitting(2,a34)==[a23,a00]
- DualA.phi_splitting(2,a24)==[a13,a00]
- DualA.phi_splitting(2,a14)==[a23,a00,a00]
- DualA.phi_splitting(2,delta3)==[a23,a00,delta2]
- # phi-normal-form
- DualA.phi_normal_form(delta3*delta3)==a12*a14*a12*a13*a12*a12
|