Jérôme BUISINE 4 лет назад
Родитель
Сommit
f9edc4a9bb

Разница между файлами не показана из-за своего большого размера
+ 77 - 11
03.Research/00.Research.tex


BIN
03.Research/00.Research/appart1opt02/appartAopt_00020.png


BIN
03.Research/00.Research/appart1opt02/appartAopt_00300.png


BIN
03.Research/00.Research/appart1opt02/appartAopt_00900.png


BIN
03.Research/00.Research/database/SdB2_00950.png


BIN
03.Research/00.Research/database/SdB2_D_00950.png


BIN
03.Research/00.Research/database/appartAopt_00900.png


BIN
03.Research/00.Research/database/cuisine01_01200.png


Разница между файлами не показана из-за своего большого размера
+ 14 - 7
03.Research/01.SVD.tex


BIN
03.Research/01.SVD/svd_vector_on_images.png


BIN
03.Research/01.SVD/svd_vector_on_images_appart1opt02_lab.png


BIN
03.Research/01.SVD/svd_vector_on_images_appart1opt02_lab_zone3.png


+ 22 - 0
Annexes/MSCN.tex

@@ -0,0 +1,22 @@
+\chapter{ Mean Subtracted Contrast Normalized (MSCN)}
+\label{appendices_mscn_transformation}
+
+In order to compute MSCN matrix, we first need to convert our rgb image in grayscale image. MSCN will extract (Natural Scene Structure) NSS information from this grayscale image. An operation is applied to luminance image $I(i, j)$ to produce :
+
+\begin{equation}
+\hat{I}(i, j) = {I(i, j) - \mu(i, j)} \over {\sigma(i, j) + C}
+\label{mscn_equation}
+\end{equation}
+
+\noindent
+où $i \in 1, 2...M, j \in 1, 2...N$ sont les indices spatiaux, $M$, $N$ sont la hauteur et la largeur de l'image respectivement, $C$ est une constante, de valeur $1$ pour prévenir des instabilité et où 
+
+\begin{equation}
+\mu(i, j) = \sum_{k=-K}^{K}{\sum_{l=-L}^{L} w_{k,l}I_{k,l}(i, j)}
+\label{mscn_mu_equation}
+\end{equation}
+
+\begin{equation}
+\sigma(i, j) = \sqrt{\sum_{k=-K}^{K}{\sum_{l=-L}^{L} w_{k,l}(I_{k,l}(i, j) - \mu(i, j))^2}}
+\label{mscn_sigma_equation}
+\end{equation}

+ 3 - 0
Annexes/lab.tex

@@ -1,3 +1,6 @@
+\chapter{Transformation L*a*b}
+\label{appendices_lab_transformation}
+
 L*a*b est otbenu en utilisant la transformation XYZ de la matrice d'image (espace CIZ XYZ). Les équations (\ref{eq:Lab_L}), (\ref{eq:Lab_a}), (\ref{eq:Lab_b}) détaillent la manière dont chaque canal est calculé.
 
 \begin{equation}


+ 4 - 5
main.tex

@@ -7,7 +7,8 @@
 \usepackage[french]{babel}
 
 % other packages
-\usepackage{graphicx}
+\usepackage{graphicx}
+\usepackage{subcaption}
 \usepackage{csquotes}
 \usepackage[locale=FR]{siunitx}
 
@@ -35,7 +36,7 @@ automatiques}}
 \include{01.Introduction/Introduction}
 
 % Section 2 : Bibliography
-\chapter{Bibliography}
+\chapter{Bibliographie}
 \include{02.Bibliography/Bilbiography}
 
 % Section 3 : Research
@@ -63,11 +64,9 @@ automatiques}}
 
 \begin{appendices}
 	
-	\chapter{Transformation L*a*b}
-	\label{appendices_lab_transformation}
 	\include{Annexes/lab}
 	
-	\chapter{Autre annexe}
+	\include{Annexes/MSCN}
 \end{appendices} 
 
 \bibliographystyle{plain}

+ 11 - 0
references.bib

@@ -1777,4 +1777,15 @@ Conclusion :
   bibsource = {dblp computer science bibliography, https://dblp.org}
 }
 
+@Article{DBLP:journals/tip/MittalMB12,
+	author    = {Anish Mittal and Anush Krishna Moorthy and Alan Conrad Bovik},
+	title     = {No-Reference Image Quality Assessment in the Spatial Domain},
+	journal   = {{IEEE} Trans. Image Processing},
+	year      = {2012},
+	volume    = {21},
+	number    = {12},
+	pages     = {4695--4708},
+	abstract  = {Présentation de la métrique BRISQUE}
+}
+
 @Comment{jabref-meta: databaseType:bibtex;}