\chapter{Transformation L*a*b} \label{appendix:lab_transformation} L*a*b est otbenu en utilisant la transformation XYZ de la matrice d'image (espace CIZ XYZ). Les équations (\ref{eq:Lab_L}), (\ref{eq:Lab_a}), (\ref{eq:Lab_b}) détaillent la manière dont chaque canal est calculé. \begin{equation} L = 116 f_y - 16 \label{eq:Lab_L} \end{equation} \begin{equation} a = 500(f_x - f_y) \label{eq:Lab_a} \end{equation} \begin{equation} b = 200(f_y - f_z) \label{eq:Lab_b} \end{equation} où \vspace{1mm} \begin{equation} f_x = \left\{ \begin{array}{lr} \sqrt[3]{x_r} & \text{if } x_r > \epsilon \\ {{\kappa x_r + 16} \over {116}} & \text{otherwise} \end{array} \right. \label{eq:Lab_fx} \end{equation} \begin{equation} f_y = \left\{ \begin{array}{lr} \sqrt[3]{y_r} & \text{if } y_r > \epsilon \\ {{\kappa y_r + 16} \over {116}} & \text{otherwise} \end{array} \right. \label{Lab_fy} \end{equation} \begin{equation} f_z = \left\{ \begin{array}{lr} \sqrt[3]{z_r} & \text{if } z_r > \epsilon \\ {{\kappa z_r + 16} \over {116}} & \text{otherwise} \end{array} \right. \label{Lab_fz} \end{equation} % default display \hspace{18mm} $x_r = {{X} \over {X_r}}$,\hspace{2mm} $y_r = {{Y} \over {Y_r}}$, \hspace{2mm} $z_r = {{Z} \over {Z_r}}$ \begin{equation} \epsilon = \left\{ \begin{array}{lr} {0.008856} & \text{Actual CIE standard} \\ {216 / 24389} & \text{Intent of the CIE standard} \end{array} \right. \label{Lab_espsilon} \end{equation} \begin{equation} \kappa = \left\{ \begin{array}{lr} {903.3} & \text{Actual CIE standard} \\ {24389 / 27} & \text{Intent of the CIE standard} \end{array} \right. \label{Lab_kappa} \end{equation}