1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- \chapter{Transformation L*a*b}
- \label{appendices_lab_transformation}
- L*a*b est otbenu en utilisant la transformation XYZ de la matrice d'image (espace CIZ XYZ). Les équations (\ref{eq:Lab_L}), (\ref{eq:Lab_a}), (\ref{eq:Lab_b}) détaillent la manière dont chaque canal est calculé.
- \begin{equation}
- L = 116 f_y - 16
- \label{eq:Lab_L}
- \end{equation}
- \begin{equation}
- a = 500(f_x - f_y)
- \label{eq:Lab_a}
- \end{equation}
- \begin{equation}
- b = 200(f_y - f_z)
- \label{eq:Lab_b}
- \end{equation}
- où
- \vspace{1mm}
- \begin{equation}
- f_x = \left\{
- \begin{array}{lr}
- \sqrt[3]{x_r} & \text{if } x_r > \epsilon \\
- {{\kappa x_r + 16} \over {116}} & \text{otherwise}
- \end{array}
- \right.
- \label{eq:Lab_fx}
- \end{equation}
- \begin{equation}
- f_y = \left\{
- \begin{array}{lr}
- \sqrt[3]{y_r} & \text{if } y_r > \epsilon \\
- {{\kappa y_r + 16} \over {116}} & \text{otherwise}
- \end{array}
- \right.
- \label{Lab_fy}
- \end{equation}
- \begin{equation}
- f_z = \left\{
- \begin{array}{lr}
- \sqrt[3]{z_r} & \text{if } z_r > \epsilon \\
- {{\kappa z_r + 16} \over {116}} & \text{otherwise}
- \end{array}
- \right.
- \label{Lab_fz}
- \end{equation}
- % default display
- \hspace{18mm} $x_r = {{X} \over {X_r}}$,\hspace{2mm} $y_r = {{Y} \over {Y_r}}$, \hspace{2mm} $z_r = {{Z} \over {Z_r}}$
- \begin{equation}
- \epsilon = \left\{
- \begin{array}{lr}
- {0.008856} & \text{Actual CIE standard} \\
- {216 / 24389} & \text{Intent of the CIE standard}
- \end{array}
- \right.
- \label{Lab_espsilon}
- \end{equation}
- \begin{equation}
- \kappa = \left\{
- \begin{array}{lr}
- {903.3} & \text{Actual CIE standard} \\
- {24389 / 27} & \text{Intent of the CIE standard}
- \end{array}
- \right.
- \label{Lab_kappa}
- \end{equation}
|