123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- # main imports
- import os, sys
- import argparse
- import pickle
- import random
- import numpy as np
- import math
- # image processing imports
- from PIL import Image
- from ipfml.processing import transform, segmentation
- from ipfml import utils
- # modules imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from modules.utils import data as dt
- import utils as utils_functions
- # getting configuration information
- zone_folder = cfg.zone_folder
- min_max_filename = cfg.min_max_filename_extension
- # define all scenes values
- scenes_list = cfg.scenes_names
- scenes_indexes = cfg.scenes_indices
- path = cfg.dataset_path
- zones = cfg.zones_indices
- seuil_expe_filename = cfg.seuil_expe_filename
- output_data_folder = cfg.output_data_folder
- image_scene_size = cfg.image_scene_size
- image_zone_size = cfg.image_zone_size
- possible_point_zone = cfg.possible_point_zone
- def main():
- parser = argparse.ArgumentParser(description="Compute and prepare data augmentation of scenes")
- parser.add_argument('--data', type=str, help="object filename saved using pickle", required=True)
- parser.add_argument('--scene', type=str, help="scene name to display click information", required=True, choices=cfg.scenes_names)
- parser.add_argument('--n', type=int, help="number of clics per zone wished")
- parser.add_argument('--images', type=int, help="number of images (with estimated thresholds) wished by scene")
- parser.add_argument('--output', type=str, help="output file with new thresholds data")
- args = parser.parse_args()
-
- p_data = args.data
- p_scene = args.scene
- p_n = args.n
- p_images = args.images
- p_output = args.output
- # load data extracted by zones
- fileObject = open(p_data, 'rb')
- scenes_data = pickle.load(fileObject)
- # get clicks data of specific scene
- scene_data = scenes_data[p_scene]
- # getting image zone size and usefull information
- zone_width, zone_height = image_zone_size
- scene_width, scene_height = image_scene_size
- nb_x_parts = math.floor(scene_width / zone_width)
- # get scenes list
- scenes = os.listdir(path)
- # remove min max file from scenes folder
- scenes = [s for s in scenes if min_max_filename not in s]
- # go ahead each scenes in order to get threshold
- for folder_scene in scenes:
- scene_path = os.path.join(path, folder_scene)
- # construct each zones folder name
- zones_folder = []
- zones_threshold = []
- # get zones list info
- for index in zones:
- index_str = str(index)
- if len(index_str) < 2:
- index_str = "0" + index_str
- current_zone = "zone"+index_str
- zones_folder.append(current_zone)
- zone_path = os.path.join(scene_path, current_zone)
- with open(os.path.join(zone_path, seuil_expe_filename)) as f:
- zones_threshold.append(int(f.readline()))
- # generate a certain number of images
- for i in range(p_images):
-
- ###########################################
- # Compute weighted threshold if necessary #
- ###########################################
- ##############################
- # 1. Get random point from possible position
- ##############################
- possible_x, possible_y = possible_point_zone
- p_x, p_y = (random.randrange(possible_x), random.randrange(possible_y))
- ##############################
- # 2. Get zone indices of this point (or only one zone if `%` 200)
- ##############################
- # coordinate of specific zone, hence use threshold of zone
- if p_x % zone_width == 0 and p_y % zone_height == 0:
-
- zone_index = utils_functions.get_zone_index(p_x, p_y)
- final_threshold = int(zones_threshold[zone_index])
- else:
- # get zone identifiers of this new zones (from endpoints)
- p_top_left = (p_x, p_y)
- p_top_right = (p_x + zone_width, p_y)
- p_bottom_right = (p_x + zone_width, p_y + zone_height)
- p_bottom_left = (p_x, p_y + zone_height)
- points = [p_top_left, p_top_right, p_bottom_right, p_bottom_left]
- p_zones_indices = []
-
- # for each points get threshold information
- for p in points:
- x, y = p
- zone_index = utils_functions.get_zone_index(x, y)
- p_zones_indices.append(zone_index)
- # 2.3. Compute area of intersected zones (and weights)
- # get proportions of pixels of img into each zone
- overlaps = []
- p_x_max = p_x + zone_width
- p_y_max = p_y + zone_height
- for index, zone_index in enumerate(p_zones_indices):
- x_zone = (zone_index % nb_x_parts) * zone_width
- y_zone = (math.floor(zone_index / nb_x_parts)) * zone_height
- x_max_zone = x_zone + zone_width
- y_max_zone = y_zone + zone_height
- # computation of overlap
- # x_overlap = max(0, min(rect1.right, rect2.right) - max(rect1.left, rect2.left))
- # y_overlap = max(0, min(rect1.bottom, rect2.bottom) - max(rect1.top, rect2.top))
- x_overlap = max(0, min(x_max_zone, p_x_max) - max(x_zone, p_x))
- y_overlap = max(0, min(y_max_zone, p_y_max) - max(y_zone, p_y))
- overlapArea = x_overlap * y_overlap
- overlaps.append(overlapArea)
- overlapSum = sum(overlaps)
- # area weights are saved into proportions
- proportions = [item / overlapSum for item in overlaps]
- # 2.4. Count number of clicks present into each zones intersected (and weights)
-
- # 2.5. Compute final threshold of `x` and `y` using `3` and `4` steps
- p_thresholds = np.array(zones_threshold)[p_zones_indices]
- # 3. Save this new entry into .csv file (scene_name; x; y; threshold)
- if __name__== "__main__":
- main()
|